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ABSTRACT: In tensor products of a left-right symmetric CF'T, one can define permutation
orientifolds by combining orientation reversal with involutive permutation symmetries. We
construct the corresponding crosscap states in general rational CFTs and their orbifolds,
and study in detail those in products of affine U(1)2 models or N = 2 minimal models.
The results are used to construct permutation orientifolds of Gepner models. We list the
permutation orientifolds in a few simple Gepner models, and study some of their physical
properties — supersymmetry, tension and RR charges. We also study the action of corre-
sponding parity on D-branes, and determine the gauge group on a stack of parity-invariant
D-branes. Tadpole cancellation condition and some of its solutions are also presented.
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1. Introduction

In the construction of type II string vacua with A/ = 1 supersymmetry in four dimensions,
orientifolds play an important role along with branes and fluxes. While we wish to obtain
a global picture for the whole variety of such vacua, it would be desirable to understand
better each of the ingredients at different vacua. At one regime of vacua where the com-
pactification manifold has large volume, the supergravity and Dirac Born-Infeld theory will
give a reliable geometric description of the system. On the other hand, in a different regime
where the size of the compactification manifold is very small, there are vacua admitting an
exactly solvable worldsheet description. The worldsheet theory describing such vacua was
found by Gepner [fl] and involves an orbifold of products of N = 2 minimal models, which
are very well-understood rational CFTs.

D-branes and orientifolds in Gepner models were studied in many papers. A class of
D-branes were first constructed in [f] using Cardy’s boundary states [{] in N = 2 minimal
models. Since then, different aspects of them were studied including how they continue
in moduli space to the large volume [[[]. Similar analyses for orientifolds were first made
in [f, [ and then in [[J—[[4] using the standard crosscap states in N = 2 minimal models,
and provided us with a large number of tadpole-free backgrounds where the particle spectra
are explicitly computable [[Lf].

The D-branes and orientifolds studied in those works are mostly made from products
of boundary or crosscap states in minimal models. On the other hand, in Gepner models
containing products of minimal models of the same level, there are also D-branes and orien-
tifolds corresponding to boundary conditions on fields twisted by permutation symmetries.
Permutation branes in general CFTs were first constructed by Recknagel [[L] by generaliz-
ing Cardy’s standard prescription [ (see also [[['4]). Some generalizations of it have been
discussed in [[§-PR(]. There have also been many work on permutation branes in Gepner
models PT]-[F], some of which employ the description in terms of matriz factorization of
Landau-Ginzburg superpotential [, B7]. A natural extension of these developments will
be to construct permutation orientifolds in a similar manner.

One of our goal in this paper is to give a general prescription to construct permutation
orientifolds in tensor product CFTs as well as their orbifolds, generalizing the standard
construction of crosscap states in RCFT given by [R] and developed further by [R9]-[Bg].



The other goal is to apply it to Gepner models and study type Il string vacua made of
permutation orientifolds. Accordingly, the paper is organized into two parts.

In section P we present our general construction of permutation orientifolds in RCFTs
and orbifolds thereof. In section B we apply our prescription to the theory of n Dirac
fermions, using the fact that the theory is related to the affine U(1)$" model by orbifolding.
We pay particular attention to assigning Grassmann parity to states and operators so
that the acnticommutativity of fermions is correctly reproduced. In a similar manner,
we construct in section f] the boundary and crosscap states in N = 2 minimal models
preserving an N = 2 superconformal symmetry.

In section [ we classify permutation orientifolds in Gepner models and write down
their explicit form. The construction of permutation D-branes will also be given here
although there have been a lot of works on it; in particular we discuss in full detail the
properties of short orbit branes, i.e. branes in orbifolds which are not simply the sum over
orbifold images. In section [ we analyze further some physical properties of permutation
orientifolds in Gepner models. We will find out how various orientifolds act on D-branes,
and determine the gauge group on a stack of parity-invariant D-branes. We also analyze
the condition of tadpole cancellation and some of its solutions. We conclude in section [
with some brief remarks.

Note added. A part of the results presented in this paper was obtained independently
by Brunner and Mitev [B7. We were informed of their work in progress at an early stage
of our work.

Rudiments of one-loop amplitudes

Here we collect our convention for various one-loop amplitudes in string theory.

Cylinder. The one-loop of open string stretching between two D-branes is a cylinder. We
parametrize the worldsheet by (o,t) with 0 < o <7, t ~ ¢+ 27l or a complex coordinate
z = o +it. The endpoints 0 = 0 and 7 are on D-branes (Bg| and |B,) respectively.
The D-branes are characterized by different boundary conditions on fields. We assume the
worldsheet conformal field theory to have a symmetry generated by holomorphic currents
W(z),W(Z) with spin S € 1Z, and assume that the currents with integer (half-odd-
integer) spins are bosonic (resp. fermionic). We restrict our interest to the boundary
states satisfying

(By| <W(2) - e*mSWW(z)) =0 = <W(2) ~ ei”SWW(z)> 1B, (L1)

o= O=T

Let X be a symmetry of the theory. The open closed duality relates the overlap of boundary
states in X-twisted sector and the trace over open string Hilbert space with weight X,

X(Bole ™/ | B X = Trg, 5 [(_)Fe*%Holx]. (1.2)

The right hand side is formally calculated as the path integral on the cylinder with the
fields ¢(o,t) obeying boundary conditions specified by D-branes and the periodicity along
time,

p(o,t) = X Lo(o,t+2n1)X. (1.3)



If one is interested in summing over spin structures, it is convenient to introduce the indices
NSNS+, RR+ to label different boundary conditions for fermionic currents W and W,

v (Bol (W(2) Fe™WW(2) = 0 = (W) F™VW(2)) [Br)ys (1.4)
Y = NSNS (RR) indicates that the fermionic fields are anti-periodic (periodic) along time t.

Moébius strip. If the theory on a strip has a parity symmetry exchanging fields at ¢ and
m — o, the one-loop of open string of width 7 and the periodicity along time (¢ ~ t + 27l)
twisted by the parity is a M&bius strip. The boundary states (Bg| and |B,) then have to
be parity images of each other. We assume there is a “basic” involutive parity P acting on
the currents as

PW (o, )P = ¢ ™WwW(x—o,t), PW(o,t)P = ™ WW(x —o,1), (1.5)

and consider parities of the form gP, defined by combining P with various symmetries g
acting locally on fields and symmetry currents. The Mobius strip amplitude associated to
the parity gP is a trace over open string Hilbert space ([[.3) with X = gP. Alternatively, it
is given by a path integral on a strip of width 7/2 and period 47l bounded by a boundary
and a crosscap states. The fields satisfy twisted periodicity along time,

p(o,t) = X Lo(o,t +4n)X, X = (gP)>
The fields obey the boundary condition specified by (Bg| at ¢ = 0, and the crosscap
condition at o = /2,
gb(%’t) = ngb(%at - 27_(_[)ng1, (16)
The corresponding crosscap state is denoted by |gP). The open-closed duality then tells
Trgy,m, [(—) e ™HolgP] = X(Bole ™ /M |gP)X = X(—)FgPle ™ /M B )X, (1.7)

The second equality tells how the boundary states are transformed under the parity. The
additional factor (—)f in the definition of crosscap bra-state is because we define the bra
and ket states to satisfy the crosscap conditions

0 = (gP] (W(t) — e I g (¢ — 27Tl)gfl)

_
=3

= (W(t) — e™SW TV (t — 27Tl)g_1)o:£ lgP), (1.8)

so that (i) the conditions on bra and ket states are related by rotation by 180 degrees, and
(ii) the bra and ket states are related by the dagger operation.

Different spin structures give a pair of NSNS crosscaps |(—)! P),|(—)f® P) and a pair
of RR crosscaps |()¥'P) for each involutive parity symmetry P. In general the NSNS
parity maps a boundary state ygs. (B| to |B')yenss Py (LL7), while the RR parity maps

RR+ <‘B’ to ‘BI>RR:F'
If |P) is the crosscap state corresponding to the parity P of ([L.F), then g|P) satisfies

(gW(Zf)gf‘1 — W g (¢ — 27Tl)g‘1> _glP) = 0.
o=3

We can therefore put
glP) = |gPg™"). (1.9)



Klein bottle. Let us next consider a closed string with spatial coordinate o ~ o + 2.
The one-loop of closed string with the periodicity along time (¢t ~ ¢+ 2xl) twisted by parity
is a Klein bottle. If the parity maps ¢ to —o modulo 27, then the Klein bottle is equivalent
to a periodic strip of width 7, period t ~ t+4nl bounded by two crosscap states at o = 0 and
m. If the two crosscaps correspond to different parities go P and g, P, then the fields obey

¢(U7 t) = gOP(O)¢(U7 t— 27Tl)]D(O)gO_l = gﬂp(ﬂ)¢(07 t— 27TZ)P(7r)g;17 (110)

where the suffix (0) or () indicates the fixed point of the parity. Therefore the closed
string is in the sector twisted by g = (gog-'). The open-closed duality then tells that

wHe
Trg[(—) e > elgyPg)] = Trg[(—) e 2™ elg Piy] = (=) goPle” 2" |g=P). (1.11)

The closed string states form a representation of the symmetry algebra of the currents
W(z) and W(z). The action of parity Pg), Px) on the currents are given by ([L.5) with
i

modified fixed points. Introducing the coordinate ( = +e~** and expanding the currents in

standard power series, one finds these parities act on the modes as W,, <+ W,,, as expected.

2. Permutation branes and crosscaps in RCFT

In this section we present the construction of permutation branes and orientifolds in tensor
products of general rational CFTs, and then extend it to their simple current orbifolds.
The argument follows that of [Iq].

Let X be a general left-right symmetric RCFT with chiral symmetry algebra A ® A,
and denote the tensor product of N copies of it by XN. The D-branes or orientifolds in
X are described by the states |B), |C) satisfying the boundary or crosscap conditions on
currents generating two copies of A:

(Wy — e SWIW_,)|BYY = 0,

4 2.1
(W, — e~ Ew=m)p_ ey = 0. 1)

Here Sy is the spin of the current W. Any product of states |B) or |C) of X gives a state
of XN satisfying the boundary or crosscap conditions

(W — e mSwwe, )| By = o, (2.2)
(Wa — e=im(Sw—n)pya YY" = 0, '

Here the suffix a is for operators in the a-th copy of X. Permutation branes and permutation
orientifolds in XV are characterized by the conditions on currents twisted by permutations

T € Sn:
(Wi — e=imswyye, )| Br™ = o, (2.3)
(Wﬁ"(a) _ e—iﬂ(SW—n)Wan)|e7r>XN — 0. ’

We call these conditions as “m-permuted”.



2.1 Cardy and Pradisi-Sagnotti-Stanev’s constructions

In the standard Cardy and Pradisi-Sagnotti-Stanev(PSS) constructions, D-branes and ori-
entifolds in general RCFT X" are expressed as suitable linear sums of Ishibashi states which
form the basis of solutions to (R.1]). Here we extend this prescription to construct permu-
tation branes and orientifolds in X%, following the argument of [[[f]. Our construction of
permutation orientifolds agrees with that of [B7).

General Ishibashi states |B;i)) and |C;4)) in X are constructed as

[Bii) = Y IM)@®M), i) = T |B;i). (24)
Mey;

Here V; is the i-th highest weight representation of 4 spanned by an orthonormal basis
{|M)}, and h; is its conformal weight. ® is the anti-unitary operator satisfying W, ® =
e_i”SWq)an. The simple products of Ishibashi states |B;ii---in)), |C;iy---in)) satisfy
the boundary or crosscap conditions (R.3) in XV with 7 = id. Define an operator R™ acting
only on the left-moving (= antiholomorphic) operators and primary states as permutations

RWW;LLRW’1 — ’v;Lr(a)7

2.5
R™ - lin@u) - lin ®@IN)N = (E)]i1 @ ir-1(1))1*+ [iN @ Tr—1(3))N- (25)

Note that, in the second equation, R™ should be understood to annihilate the state unless
the state |i, ® Ix-1(q)) i contained in the Hilbert space of X for all a. The + sign in the
right hand side of the second equation arises if the theory X contains fermionic states and
currents. The m-permuted Ishibashi states are then simply given by

1B iy in)) = B™ By - in)),
€™ iy i) = R™|Cyiq - in). (2.6)

In the rest of this subsection we assume X to be an RCFT with charge conjugation
modular invariant, so that R™ annihilates the primary state |i; ® 71)1 - -+ |iny ® tx)y unless
ir—1(q) = iq for all a. We also assume, for simplicity, that all the states and currents in X
are bosonic. We denote the number of cycles in a given permutation 7 by [r], the c-th cycle
of m as m, and its length by |m.|. The m-permuted Ishibashi states can then be labelled by
je (e=1,---[n]) such that

ia = Je if a € . (2.7)
So we introduce another expression for Ishibashi states:
B ) = O (B0 = D160 RTIBsin i),

€7 ) = @ 1€ = D060 RT|Csin i),



The delta symbol 52(3) enforces the condition (7). The inner products of these Ishibashi
states read

[o]
(B 50 Gl € 1B 1 i) Z 62676 T wanloelo),
c=1
7 (m) ¢(o) 7
(€7, 31 Jim | €™ ICT g1 -+ i) 25” ij 01 Hng(”Uc”T%

(B3l T T ) = 3 55005 015 HI”%" (loel).
(0 = w—l o) (2.9)
where 7 is an involutive operator defined to act on characters as
Txi(7) = Rilr) = e ™03y (r + 1/2). (2.10)

D-branes and orientifolds are linear combinations of Ishibashi states satisfying certain

consistency conditions. Recknagel [[L] constructed the permutation branes as follows:

T T 7rc SJc c Te. +
|BJ> = |BJ1---J[ ® |‘B ®Z ||]7r 1/2 |‘B C;JC>>' (211)
Je

In [[Ld] it was also shown that the open string spectrum between any two such D-branes
satisfies integrality. To see this, let us consider the finest possible decomposition of the set
of N letters, {1,---, N} = J, Sy such that any cycle of 7,7 or 0 = 7! o 7 is contained in
one of 8. The annulus amplitude then becomes

[o]
(BE[emH/ | BT) = Z TV, 3. 3) T xo(it/ ol

1oy [U] b c=1
N335 =311 A S"c] IT s (2.12)
[7el/2 BIERE Jei :
(Soj)
.7 TES b TES ocES b

The coefficient N} always takes the form

ZM (n>0, g=>0)

2g+n—+1
J SOJ
JIn
NN G=0 o
Zjl,"',jy Tr[Ny Ny, - “Njuys - Njy Ny, - qu 1qu 1 (g>0)

where N; is the fusion matrix whose elements are all non-negative integers,

SiSE:iST:
I _ l JiRkiP
N = N = 3D SR



Hence N is always a nonnegative integer. The right hand side of (R.1J) has an interpreta-
tion as the number of (n + 3)-point conformal blocks on genus-g Riemann surface.

The construction of [[[§] can be extended to crosscap states in a straightforward man-
ner. General permutation orientifold of X is labelled by an involutive permutation 7 and
Then we propose the following crosscap

a*

a parity Py = ®_, Py, satisfying Pr. ., =Fr
states,

(7]

(]

T T XIcc ..

’el> = ‘ell---l[ﬂ]> = ®‘e ®Z HzTcH/Z e ;]C»a (214)
c=1 =1 je

%, = [P Gl =1
F 7 S (Il = 2)

Note that the lengths of all the cycles of m have to be one or two for 7w to be involutive.
The integrality of Klein bottle and Mobius strip amplitudes can be checked by a direct
computation. One encounters factors of the form

Z Sng SimiriPrj o Ploj

Sgl‘+m+2n71 (m’nal > 0, m+2n > 2), (215)
]

J

which can be rewritten in a similar way as (B.1J), using the N- and Y-matrices

Yili = Y}, = ZZ: SJ%ZP“, (2.16)
whose elements are all known to be integers. For this rewriting to be possible, the number
of P-matrices in (R.15) has to be always even; this is actually the case because we put
Xr1.j. = Pr,j. or Sp,j. depending on |7.| =1 or 2. To check this, let us consider the Klein
bottle amplitudes between m- and 7-permuted crosscap states. In order to write them
down one needs the decomposition {1,---, N} =J, Sp in the same way as for the annulus
amplitudes. The factors of the form (R.I5) are associated to each of S,. One finds the
number of P-matrices in (R.17) is the sum of the numbers of odd-length cycles of 7 and
those of 7 contained in Sy, which is always even. The same argument applies to Mobius
strip amplitudes.

In summary, for an RCFT X defined with charge conjugation modular invariant, the
formulae (B.11)) and (R.14) give general 7m-permuted boundary and crosscap states in X'V.

2.2 Simple current orbifold

Here we briefly review some basic properties of simple current orbifolds X' /G and the
constructions of D-branes and orientifolds in such theories.

Suppose a CFT X has a group G of simple currents. A simple current g € G is
by definition a representation of A which maps any representation into another unique

representation under fusion:

g X1 — gi.



It follows that g induces (infinitely many) invertible maps between two highest weight
representations V;, Vy; of A. For an RCFT X defined with charge conjugation modular
invariant, its orbifold X' /G is defined by the modular invariant

1 . N B
7X/G — @Z Z 2m(Qa> ()=0(91:92) 3 (7) x g o (— 7). (2.17)
i g1,92€G
Here Qg4(i) is defined and characterized by
(1) Qg(l) =h; + hg - hgi (mOd Z)a
(2) Qq(1) + Qg (i) = Qg (4) (mod Z), (2.18)

(3) Qqg(i) + Qq(j) = Qq(k) if Nikj #0 (mod Z),

and q(g1, g2) is a symmetric bilinear function of the elements of G satisfying

(4) Qg (92) = 29(91, 92) (mod Z),
(5) a(g,9) = —hg (mod Z).

Modular invariance of Z¥/C follows from the above conditions together with an important

formula [Bg, BY:

(2.19)

S;;e2miQu0) = 5. . (2.20)

In the RCFT terms, the sector twisted by g € G of the orbifold theory X' /G consists
of the representation spaces V; ® Vg of A ® A. The ground state in this sector has the
eigenvalue

J = 627ri(Qg/(i)_Q(979l)), (2.21)

as can be read off from (R.17). In a formal field theory terms, each term in the torus
partition function (B.17) of the orbifold theory X' /G is given by the path integral of the
fields ¢(z) on a torus (z ~ z + 2w ~ z + 2x7) with the periodicity conditions

¢(2) = g7'd(z+2m)g1 = g3 d(z +277)ga. (222)
2.2.1 The issue of doubled periodicity

Although the function Q4(¢) only needs to be defined modulo Z in constructing the modular
invariant torus partition function, we wish to have it defined modulo 2Z for constructing
boundary or crosscap states in later sections. In what follows we assume that Q,(7) is
defined modulo 27 so as to satisfy the equations (2,3,4) of (R.1§)-(R.19) modulo 27, namely
it is bilinear in g and ¢ modulo 2Z. However, QQ,4(i) so defined will not always be single-
valued (=periodic) modulo 2Z. For example, [[, g, = id does not necessarily lead to
Y a @g. (i) = 0 modulo 2Z, although the equality always holds modulo Z. In later sections,
this kind of subtlety will be called “doubled periodicity”.

In constructing crosscap states in orbifolds, we will also need to find an improvement
of conformal weights

hi — hi—0(i), (2.23)

by an integer-valued function 6(7) so that the equations (1) and (5) hold modulo 2Z as well.
Again, the function 6(i) will not in general be single valued as a function of representation

label 1.



2.2.2 Branes

Boundary states in orbifolds X' /G are constructed by summing over images and twists.
Pick a boundary state |B;) in X, and let H C G be the stabilizer of J. Then there are
boundary states in X' /G in one to one correspondence with the characters p of its untwisted
stabilizer U C H [B1], BY],

VIH] h
B = S N 9B p(h), (2.24)
VIGIUL (e nev

Here |B ;)" is the boundary state in the h-twisted sector and defined to satisfy
(B le e g By = Ty glhe e, (2.25)

i.e. their overlaps should be proportional to the traces over open string Hilbert space with
additional weight h. It is important that the twist h does not run over all the elements in
H. The definition of untwisted stabilizer group will be given in section P-J. To construct
the boundary states in orbifolds explicitly, one therefore needs the expression for the states
|Bs)" in terms of Ishibashi states,

S(h)

1B)" h(G)N". (2.26)

J

Here the matrix S has indices J, j which run only over representations fixed by h, and
the elements are supposed to satisfy

s = 59 exp2mi(Qy(d) + alg. h)). (2.07)

2.2.3 Orientifolds

Crosscap states in X'/G are constructed as sums of crosscaps in X'. Here we review the
construction of [B4).

Let P; be an involutive parity symmetry of X and |Py) the corresponding crosscap
state. The parity Pr maps a state in V; ® V; to a state in V; ® V;. For any g € G, gPr
defines a parity whose action is that of P; followed by the phase multiplication (R.21). gP;

1

is also involutive due to gP; = Prg~" which one can easily check. So there are crosscaps

|gPr) satisfying
~ _ ~ 0) — ™) —
(ggPrle ™/ gPr) = TizlggP”e ™ol = TiglgP e mHel], (2.28)

where the trace in the right hand side is over the g-twisted closed string states, and the

superscripts (0), (7) indicate the fixed points of the parity on the circle of circumference

) /G in the orbifold is therefore described by a sum of crosscaps in X,

|P)*E = 9Pr) (2.29)
7 o)

27, The crosscap | Py

,10,



One can also consider the sum of crosscaps in X dressed by characters of G,

[P = \/‘?Zlg 1)e (2.30)

geG

Note here that, since g|P;) = |gPrg™") = |¢*>Pr) from ([L.9), the character € in (R.30) have
to be Zo-valued if the crosscap states in orbifold are made of G-invariant closed string
states. Such a degree of freedom arises only when G contains an element of even order, i.e.
if G/G? is non-trivial.

To extend the PSS construction to orbifolds, one needs to find the precise relation

(including the normalization) between the crosscap state |gPr) corresponding to the parity
gPr and the PSS state

Z 91 J
A /SOJ
From the formula for overlaps of two PSS states,

_ gl
(Cogrle™™ e/ |Cyp) ZY 995

B Y

one finds that, for an arbitrary character ¢™2) of G, the following sum of PSS states

> 1Cer) expmi{hs — q(g.9) — hgr — Alg)} (2.32)

Vv |G geG

corresponds to a parity symmetry of the theory X'/G which acts as
Prexpin {hgr +q(g,9) — hr + A(g)}

on g-twisted sector. The crosscap state (R-33) is G-invariant provided A(g?) = 2Q,(I)
modulo 2Z, as follows from the identity [B2, BJ]

2P, i = Py expim(2hy + 2hgi — hi — hg2;). (2.33)

We have thus found that, in order to define a parity P; and the corresponding crosscap

state in orbifold X' /G from those in X, we need to choose a character e/™® of G satisfying

A(g?) = 2Q4(I) mod 2Z. We find it most convenient to set A(g) = Q,(I) mod 2Z,
although this gives rise to some subtleties because ™
of G.

We first notice that there exists an integer-valued function 6 on the set of representa-

is actually not always a character

tions of A with the following property:!

hr —q(g,9) —hgr = Qqg(I)+6(I)—0(gI) mod 2, (2.34)

1@ is assumed to act on I freely.

— 11 —



Putting I := id and setting 6(id) = 0, one finds 6(g) = hy + ¢(g,9). Inserting this back
into (R.34) one finds that §(I) can be thought of as a modification of h; discussed at (2.23).
Introducing o = €™) the requirement that (2:29) coincides with (P-33) up to an overall
sign when A(g) = Q4(I) just boils down to

lgPr) = |Cqyr)og1. (2.35)
The general crosscap state in X' /G is thus given by

|PHYYE = > [€gr)agr - €(g). (2.36)

1
’(;’gec

The parity Pf corresponding to this crosscap acts on g-twisted sector as Pre(g)orogr.

The crosscaps |gP;) defined by (B.35) satisfies the shift relation g|Pr) = |¢*Pr), so the
crosscap state (R.3() is a G-invariant closed string state. However, |gPr) has in general
doubled periodicity because of the doubled periodicity of o4;. Therefore, € in (£:3q) should
be chosen in such a way that the summand in the right hand side is a single-valued function
of g € G.

2.3 Permutation branes in orbifolds

In this and the next subsections we consider the permutation branes and orientifolds in
the orbifold XV /G, where G is a subgroup of GV. For simplicity, we assume G is invariant

under Sy, namely,

9=(91,--,9N) €G = 9gx = (91)> "1 9=()) €G- (2.37)

D-branes in XV /G are constructed as sums over images and twists. The simple current
g= (g1, ,gn) acts on m-permuted boundary states |BF) in X as

glB5) = gl [B7) = &7 [B%),  Jl=[uer, 90) e (2.38)

In particular, g fixes the brane |Bj) if

Jc:Haeﬂcga-Jc c=1,--[n].

As a simple example, all the m-permuted branes are fixed by g if [ | go = 1 for all cycles

aEme

me. Let us denote by H C G the stabilizer of |Bj). Then the corresponding permutation
brane in the orbifold takes the form [B1, BJ]

T ’H‘ h
BTG = =N ST gIB5)" p(h), (2.39)
VIGIU| i yégim

where |B§>h denotes the boundary state in h-twisted sector. The twist h runs over the
group U C H called the untwisted stabilizer (see below for the definition) of the brane, and

p is a character of U.
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The permutation boundary states in twisted sectors are constructed as follows. Since
they factorize into pieces representing each cycle,

B3 = e, BT, (2.40)

we focus on the cases where 7 itself is a cyclic permutation, 7 = (12--- N). For such 7
the boundary states in the sector twisted by h = (hy,---,hy) are defined by

S(htot)
T Jj T,
B = Z W 1B™; )", (2.41)
j ]
where the matrix S was introduced in (), hiot = h1ha -+ - hy and the Ishibashi states
in h-twisted sector are defined by

BT )" = RTIBiji-- i),
gk =lgjr—1 (k=1,....N; jo = j). (2.42)

Note that the Ishibashi states defined in this way depend on the choice of the “first” entry
in the cycle. For more general cyclic permutation 7 = (ajas---ay) we define |B™;j)"
so that 7 appears in the a;-th antiholomorphic sector and h.j = j appears in the ay-th
holomorphic sector.

In order for the sum over twisted sectors to make sense, we need to require that the
J-label of |BT)" is transformed in the same way as that of |B7)"=i4 by simple currents:

9\B§>h = ‘B;rtot(J)>hw7T(g7h)' (gtotEglgz“'gN) (2-43)

The factor wr(g,h), if nontrivial, means that g € G not only acts on the J-label of the
brane |B7*) but also transforms p(h) to p(h)wx(g,h). The simple current prescription
gives

ww(g’ h) = eXp 2mi {_q(gl ' gN, hl te hN)
+a(g1, h) + a(gz, hiha) + - +algn, hih3 - B3 _thy)} . (2.44)
For a state |B§>h in h-twisted sector to contribute to (R.39), H should be realized trivially
on it; otherwise it would be projected out by the orbifolding procedure. The untwisted
stabilizer group U C ‘H of a boundary state is formed by such h’s. U is therefore formed
by those h € H satisfying wr(g,h) =1 for all g € H.
2.3.1 Diagonal branes

An interesting class of permutation D-branes are the “diagonal branes” in X2 or its orb-
ifolds, which are regarded as wrapping the diagonal, X C X2.
First, let us consider the following boundary state in the product theory X2,

Baing)® = B5) = Y RO |B;i,i). (2.45)

,13,



Note that the modular S-matrices in the enumerator and denominator of Recknagel’s con-
struction canceled out. It gives the annulus partition function,

XQ<Bdiag|6_7rHc/l|Bdiag>X2 = ZXi(i/l)Xi(i/l) = ZXi(il)Xz(il) = Za(il).  (2.46)

Let us next consider an orbifold X2 /G. For simplicity, we take G = G®G = {(g1,92)|g1, 92 €
G} with G acting on all the representations in the theory X freely. The diagonal brane is
invariant under the elements h @ h~! € g, so we consider the sum over h ® h~ 1 twisted
sectors,

—1
|Bdiag>orb = Z g®1 d1ag>h®h

\/‘?gheG

= g 2 lo@ DR B:G).) (2.47)
g,heG i

This diagonal brane gives the annulus partition function,

0D (e[ B) T = |G| LS amiQu@+2miato)y, oG /1) (/1)
g,h,i

- & Z 2miQu () F2mia0 )y (il)x 1 ) (i) = Zid € (il). (2.48)

97]74]

Let us reconsider the properties of diagonal branes in more abstract terms. We first
consider the product theory X2 defined on a strip of width 7 parametrized by (o € [0, 7],t €
R). We wish to consider what boundary condition on the fields ¢; 2 corresponds to the
diagonal brane. Suppose that the theory X on a circle (o ~ o + 27) has an involutive
parity symmetry P which acts linearly on fields ¢ as

P 6(0) — R(P)o(—0), (2.49)

where R(P) is a matrix representation of P when ¢ is a vector describing the collection of
fields. Then consider the theory X2 on a strip with the following boundary condition on
fields at o = 0, 7:

$1(0) = R(P)§2(0), ¢1(m) = R(P)pa(r),

52(0) = R(P)r(0). dalm) = R(P)oa(r). (250
One can then define a periodic field ¢ of the theory X on a circle of radius 27 by
¢(U) = ¢1(U) (U S [0777])7 (2 51)
#(0) = R(P)p2(2m — o) (o € [m,27]). '

The theory X2 on a strip with boundary condition (R.50) is thus equivalent to the the-
ory X on a periodic cylinder. We therefore identify the fundamental diagonal branes

|Baiag), (Bdiag| with the boundary conditions (2.50) on fields.
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Let us next consider the orbifold theory. We first wish to show that the overlap of
(Baiag| and (g1 ® g2)|Bdiag) gives a toroidal partition function of the theory X with period-
icity along the o direction twisted by g; ! 9y ! In field theoretic terms, the multiplication
of (g1 ® g2) corresponds to the modification of the boundary condition on fields at o =,

n1919;" = ga(R(P)da)gy ',
9262951 = gu(R(P)é1)gy "

Assuming that the action of simple currents on fields is also linear and using the notation
g 1¢g = R(g)¢ it can be written as

R(gr o1 = R(P)R(g5 "),
R(g; N2 = R(P)R(g7 ).

It follows that the field ¢ defined as in (R.51]) satisfies the twisted periodicity, as claimed
above:

(2.52)

(2.53)

d(0) = R(grg2)p(o —2m) = (9192) " d(0 — 2m)g19a- (2.54)

Second, the overlaps of diagonal boundary states in (h ® h~!)-twisted sector correspond to
path integral over fields of X2 on a cylinder with the twisted periodicity along ¢,

p1(0,t) = hei(o,t —2nl)h™,  ¢olo,t) = h™téa(o,t — 2nl)h. (2.55)
In terms of the field ¢ this is simply
$(o,t) = he(o,t —2rxl)h L. (2.56)

From these two observations it follows that the diagonal branes of X2 sitting in twisted
sectors satisfy the formula

heh~? <‘Bdiag‘e_7rH/l (gl & gQ)I‘Bdiag>h®h71 = Tr;iflggl [he_QﬂHl]' (2'57)

By comparing this with (2:4§), one can check that the RCFT construction gives the diagonal
branes with the correct property.

We have seen in the previous subsection that the PSS prescription allows to construct
crosscaps corresponding to different parity symmetry. The fundamental diagonal brane
we have studied above should be associated to the fundamental parity P corresponding to
the crosscap |Cp). The diagonal branes corresponding to other parities are obtained by a
similar argument as was given above. For each representation I of A satisfying the fusion
rule I x I — id, there is a boundary state |B§12)> in A2

12 Sri .
B'Y) = DG RO B ). (2.58)

The fields of the two copies of X are glued via the parity P;. The corresponding diagonal
branes in the orbifold are given by

1 _
Bt = —— N (g @ 1)BY)EN p(n), (2.59)

\/@ g,heG
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where p(h) is a character of (the double cover of) G, and the boundary states in twisted
sectors are defined as

Sri

3(12) h@h~! LR12) 1B p wQn(l) 2.60
| - 3G 00, 20
where the last factor is added so that (g1 ® gg)|3 >h®h_ |3g1g21>h®h—1 is satisfied.

Note that (2.6() in general has doubled periodicity as a function of h, so p(h) in (2:59)
should be chosen so that the summand of the right hand side is single valued.

2.4 Permutation crosscaps in orbifolds

Let us next construct permutation crosscaps in orbifolds.? For an involutive permutation
7 € Sy and a 7-invariant parity P; of XV, PSS’s construction gives us the crosscap state
in XV corresponding to the parity Pyr. To obtain crosscap states in the orbifold XV /G,
one needs crosscaps corresponding to the parities gP;m (g € G) which map the states of
XN as follows:

gPim: a1 ®@---®@any — (g1pflaﬂ(1)) & (gNPINan(N))- (2.61)

The permutation crosscaps in XV /G are sums over those in X%,

|PPayXtIe = ng ) e(g), (2.62)

v |g g€eg

dressed by a character €(g) of (the double cover of) G satisfying suitable periodicity con-
ditions. The G-invariance of the crosscap state requires €(gg,) = 1 for all g € G, but it
does not necessarily require that € be Zg-valued. Note also that, for the equation (B.69)
to define an involutive parity in the orbifold, P; actually does not have to be involutive; it
only has to square to an element of G.

The m-permuted crosscap states should factorize into pieces representing the cycles of 7,
’gPIﬂ'> = ®[C7T:]1 ‘gcplcﬂ'c>7 (263)

where all the cycles of m are of length one or two because 7 is involutive. For cycles of
length one we have seen the correspondence (R.35), so it remains to construct the crosscaps
|gPrm) for the cyclic permutation of length two, m = (12).

We focus first on the crosscap |[gPm) corresponding to the fundamental PSS parity P.
The overlaps of two permutation crosscaps (gP7| and |§P) correspond to the theory X2
on a space (o € [0,7],t ~ t + 4xl) with boundary conditions

$1(0,t) = R(P)R(ggl)¢2(07t — 2rl),

(07t) = R(P)R(g;1)¢1(07t - 2771)7 (2 64)
61(m,) = RPYR(G; ) bolrm 1 — 2, |
$2(m, 1) = R(P)R(Gy )¢ (m, t — 27l)

2The outline of the argument in this subsection was suggested to us by K. Hori.
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As states in the Hilbert space of the theory X2, the crosscap states (gPn| and |§Pm)
belong to the sector twisted by gg-* = (g1 9o ' 9291 1) and §j; !, respectively. Therefore,
9195 L= 9105 ! for pairs of crosscaps with nonzero overlaps. By arguing in a similar
way to the construction of diagonal branes, one finds that the theory X? with boundary
conditions (P.64)) is equivalent to the theory X on torus (o ~ o + 2m,t ~ t + 4xl) with
periodicity,

d(o,t) = q1gy (o —2m, )9 51 = 9195 B(o,t — 4nl)gagy * (2.65)

The overlaps of permutation crosscaps thus gives the torus partition function of the theory
X,

(gPrle ™/ gPr) = Tr;f1 g,l[glggle*‘*“fcl]. (2.66)
1

We need the formula for permutation crosscaps expressed in terms of Ishibashi states
in twisted sectors,

lgP7) = Y Xi(g1,92) 1€ gui, g2i). (2.67)
i
We determine it by requiring that it has the following overlap with the fundamental diag-
onal brane,
<‘Bdiag’ef7rHc/2l‘gPﬂ_> _ Tr;}; L [glef2le7i7rP] _ TI‘;}Z ) _1[92—1672le+in]’ (2.68)
99 97 92 91

where one should recall
H:LO+EO_1_627 P:Lo—l_/o.

To understand this condition, let us consider the theory X2 on a strip (0 < o < 7) bounded
by the diagonal brane (Bgiag| and its image under the parity gPm. The partition function
on the Mébius strip is calculated by the path integral of fields ¢; o of X? with the following
boundary condition at o = 0,

$1(0,t) = R(P)g2(0,1),

2.69
62(0,) = R(P)on (0,1), (269
and the periodicity along the t-direction,
_ —1 _ _
61(0.1) = R(PYR(g; ol — 0t — 2n), o)

¢a(0,t) R(P)R(gfl)gbl (m —o,t — 27l).

It follows that the boundary condition at o = 7 has to be that of (91 ® g2)|Baiag), (£.53).
Thus the theory X2 on Mdbius strip is equivalent to the theory X on the torus, with the
field ¢ satisfying the periodicity along the spatial direction (R.54), and the time direction

o(o,t) = g;lgb(a —mt—27ml)gy = qrop(o+m,t— 27Tl)gfl, (2.71)
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hence the requirement (R.6§). We solve it and find

|gPr)y = Z |C™; g1, g21)) exp i (2q(g1, g192) + 2hg, + 2h; — hgi — hgyi)

7

= Z €™ g1, 921)) 04130955 exp i {q(9192, 9192) + Qg2 (7) } - (2.72)

)

The expression for more general permutation crosscaps |gP;7) can be found by study-
ing its overlap with the diagonal brane |B7). Our final result reads

lgPim) = g—éi €™ 914, 921)) 01T goi €xp Ti {q(9192, 9192) + Qg1go (1) + Qgrgo (1)}
Z (2.73)
Note that this crosscap has the same periodicity as that of oy, g, (1)0g,g,-
2.5 Parity action on D-branes
The action of parity P;m on branes in X” is read off from the relation
(Bl |Prm) = (Prmlq)’|B'). (2.74)

When |B) is a o-permuted brane gluing the a-th holomorphic sector with the o(a)-th anti-
holomorphic sector, its parity image |B’) should glue the 7 (a)-th antiholomorphic sector
with the 7o (a)-th holomorphic sector. So |B’) has to be a ¢/ = o~ !m-permuted brane.
One then finds, using

(Biir - in|RT g R™Cs 1 jn) = (Ciji- NIRRT qf R7 BTy in),  (2.75)
where 7, = i,-17(,), that the parity acts on boundary states as follows:
(BSla/'|Prm) = (Prwlaf’|BS) = (Prlaf'w|BY), (2.76)

where w is a simple current satisfying wywlI = I. Although there may be several w’s
satisfying this, there must be a unique w that determines the action of parity Prm on D-
branes. For example, for the permutation crosscaps |gP7) made from the fundamental
parity P and g = (g1, -+, gn), one finds both from the M&bius strip amplitudes of RCFT
and from a formal field theory argument that

(B§lq/'|Pr) = (Prlqf!|BS) = (B|q!|gPm) = (gPrlqlg|BY ). (2.77)

Note here that the labels J, J denote the sets of representations {J.}, {J.} (c = 1,---,[0]).
J. and J, are for the c-th cycle of o and ¢’, which are conjugate to each other thanks to 7
being involutive.

By a similar argument one can derive the action of parity P/ (R.63) on branes in
orbifold XV /G. We notice that (R.7§) relates the bra Ishibashi states in the h-twisted
sector to the ket Ishibashi states in h_!-twisted sector. The Mé&bius strip amplitude of the
orbifold theory,

(B laf |P7) ~ D (h) - "(BSlai lgPrm)"e(g) - 6y, g1 (2.78)
g,h
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allows us to read off the parity action on boundary states:
B s e@)BS ) T=wl, plhe) = p)e(t) . (279)

The transformation law of p(h) means that the parity P/ maps states in h-twisted sector

to those in h,-twisted sector after multiplying e(h)™", a fact which follows also from the
construction of permutation parities in orbifold.

The above expression is still somewhat ambiguous because of the subtlety mentioned
after (2.43): we need to specify the first element for each cycle of o to define Ishibashi
states in twisted sectors unambiguously. If o = (a, ---a, ) is a single cycle and mo~lm =
(ay -~ al,), then we have to put iy =7, in (R.79) and get

moln = (dy---dy) = (nlan)---7(ay)). (2.80)

2.5.1 Parity invariant D-branes

As a future reference, we study the condition of parity-invariance for permutation branes
in more detail. Here we give the condition on the pair (7, o) in order for the o-permuted

brane to be invariant under m-permuted orientifold.

Condition for Parity Invariant Branes (PIB) 1. Any pair of permutation 7,0 satis-

fying o = o~ w, w2 = id can be decomposed into the following blocks,

(1) o = (a1a2 - azn11), 7 = (a1agn+1)(azazn) - (anani2),
(2) g = (a1a2 e agn), ™ = (a2a2n+1)(a2a2n) (anan+2),
(3) o = (arag - - aa), = (a1a2,)(azas,) - (apnani1),
(4) o= (ar--ap)(ay---ay), 7= (a1ay)(aza;_4) - (anal).

The simplest block ¢ = 7 = id € S} is a special case of the first type, and o =
(a1az), ™ = id € Sy is the simplest example of the second type. The permutation o~ !'m
or its inverse appear in Mdbius strip amplitudes as explained in (@) Note o~ ! always

L7, so it consists of cycles of lengths one or two

squares to identity because of o = o~
only.

In general, the spectrum of open string between identical D-branes contains an identity
representation. The Mdbius strip amplitude for parity-invariant boundary states, when
written in the loop channel, should therefore contain an identity character. To check this

explicitly, we need to show
Nec

(€T |e~mHe/ A By R (g=e 2™ (2.81)

Here —% is the energy for the SL(2,R)-invariant ground state. The amplitude can be

written in the tree channel as a sum of the following products of characters,

T .o T sl

|5al even |55 odd

(G=0"tom),
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where one should recall that each character x;, or X;, corresponds to a cycle of & of even or
odd length. One can read off the energy Ej of the ground state of the open string Hilbert

space by modular transform,

C C
Ey = — x_ X
‘ 2 6] > 24]5,

|6a] even 65| odd

This saturates the lower bound —Ne¢,, /24 iff all the cycles of & have length one or two.
The four types of parity-invariant boundary states listed above all satisfy this condition.

3. Dirac Fermion and the affine U(1); model

In this section we illustrate the construction of permutation branes and orientifolds in the
theory of d Dirac fermions ®®. It is pretty obvious how to construct the boundary or

crosscap states satisfying

( e inemgEaen) | — g (Y=NSNSor RR; n=4=) (3.1)
n -n Yn T

n

as Bogolioubov transforms of the vacuum following [[i0, [i]. On the other hand, one can
construct the same states from the boundary or crosscap states in the affine U(1)4 model
by a suitable (Zy)? orbifold. Since the affine U(1)¢ theory or its orbifold is purely bosonic,
one must assign Grassmann parity to the operators and states in a suitable manner to
reproduce the properties of fermions correctly, as we will discuss here in detail. The result
obtained here also has a direct application to Gepner’s construction of superstring theories,
where supersymmetric worldsheet theories are constructed from purely bosonic RCFTs by
the same orbifold.

The affine U(1), symmetry is generated by the current J = iv2k0X augmented by
spectral flow operators etiV2EX , where X is a canonically normalized chiral scalar field.
There are 2k highest weight representations labelled by a mod 2k integer n corresponding
to the collection of operators ¢/4X/V2k (¢ = n mod 2k) and their descendants. The U(1)
charge and conformal weight of the operator e/X/V2 are (Jo, Lo) = (q, %). The model at
level k = 2 has four representations labelled by an integer s ~ s+ 4. We denote by 1 the
simple current satisfying the fusion rule ¥ (s) = s + 2.

The affine U(1)2 theory is related to the theory of a Dirac fermion by the Zs-orbifolding.
This fact can be seen from the relation of characters: from the characters of the affine U(1)s

algebra,

XS(T7 I/) = TI‘[S]qLO_l/24ZJO/2 _ n(T)—l Z q21222l’ (q :627ri’r7 p :627riu) (32)
l€Z+s/4

one can construct characters of Dirac fermion model,

XoEx2 = XNSi(T, v) = q*i H (1+ zqué)(l + ,z’lqm’%)7

m>1
= 3.3
x1Ex-1 = xX*(rv) = qﬁ(z% + 27%) H (14 2¢™)(1 + 27 Lg™). (3:3)
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The theory of d Dirac fermions is obtained from the affine U(l)g model by orbifolding
by Taso = (Z3)? generated by the simple currents 1),, with the choice ¢ = 0. The
choice ¢ = 0 does not give a modular invariant torus partition function because it does
not satisfy (R.19), but the modular invariance is recovered by summing over four spin
structures. In RCFT terms, different spin structures arise from (i) restricting to states
for which the eigenvalues of all v, are aligned, i.e. 1, = 1(Va) for NSNS sector or (—1)
for RR sector, and (ii) summing over twisted sectors with trivial weight or weighted by a
nontrivial character € : 'ggo +— Zga such that €(¢,) = —1(Va). It is easy to see that the
orbifold by I'aso and summing over spin structures gives the same torus partition function
as the orbifold by a group fgso = (Z2)?! of even monomials of ,. The orbifold group
fGSO is used in Gepner’s original construction of superstring models [i].

3.1 D-branes

The quartet of boundary states in Dirac fermion theory should be obtained from those in
affine U(1)y theory by orbifolding,

[B)yssy = [B;O)UD + [B;2)UD) = (| Bo)UD) 4 |By)U(h),

|B>NSNS— = |B§O>>U(1) - |B;2>>U(1) = %(|BI>U(1) + |371>U(1)), (3 4)
Bune = [BI)VD + [B—1)UD = (| Bo) VW) — |By)UD), |
Bl = —i[B;1)UD 44 [B; —1)UD = L (B,)UD —|B_;)U),

Here the Ishibashi and Cardy states of the affine U(1)2 theory are related by the standard
formula

B0 = 30T B U0, g, = e (35)
Os

s

We would like to make sure that the boundary states (B.4) constructed from those in
U(1)2 theory indeed satisfy the boundary conditions on Dirac fermions 1= (2), ¥+ (%),

(O +i=,)|B)y, = 0. (3.6)

We first notice that 1)* = e**X correspond to nothing but the simple current ¢ in the
affine U(1)s theory. It induces invertible maps from Vg to Vs that square to the identity.
There are infinitely many such maps; for example the multiplication of (7 +~,) is easily
seen to square to unity. Pick an arbitrary such map and denote it by ¥. On closed string
Hilbert space, one can thus consider operators W, v acting on the right and left-moving
sectors respectively. For a suitably chosen basis of orthonormal states, they satisfy

g/(ys,M> ® |3, z\:4>) =|s+2,M)®]|3, M> - (3.7)
U(|s, M) ® |5, M)) = |s, M) ® |5+ 2, M)(—i)(=) =z .

where |s, M) denotes the M-th state in the representation [s] of affine U(1)s. The phase
factor in the second equation was chosen so that the relations ¥? = W2 = id, WU+ ¥V = (
hold. The boundary states defined in (B.4) then satisfy

(¥ +iW)|B) (U Fi0)|[B)ge = O, (3.8)

NSNS+ 0,
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for any choice of (U, \I’) corresponding to the simple current . We regard this as corre-
sponding to the boundary condition on fermions (B.4).

Let us try to extend the argument to general permutation branes in the theory of d
Dirac fermions. We wish to find a quartet of boundary states in the orbifold U(1)5%/(Z)
satisfying the boundary condition

(U™ £00)[B)ynse = 0, (F7@ Fi0)[B)r, = 0, (3.9)

for any map ¥ associated to the simple current in U(1)2 model. The operators W%, e act
on the states of the a-th U(1)s theory as (B.7), but we also need to determine how to pass
them through the states of the first (a — 1) theories. It should be determined in such a way
that the maps ¥, and \T/a anticommute with one another.

Hereafter we work with the assignment that the state |s, M) is Grassmann even when
s =0 or 1, and otherwise Grassmann odd. This Grassmann parity has to be taken care of
when the states are permuted by operations such as R™ (2.) in constructing permutation
branes. In the following discussions, we denote by R™ the permutation operation with
Grassmann parity taken into account, and by R] the one neglecting the Grassmann parity.
The two operations therefore differ by + signs when action on general states or operators.

To understand how the effect of Grassmann parity enters into the definition of bound-
ary states, let us consider the simplest permutation brane in two Dirac fermion theory. The
boundary states are sums of states in the untwisted and twisted sectors. The untwisted

part is given by

1 2 2 7is _ miSs
3 (1B BER) = 30 R Biss) = 3 e

(—)2R1? |B; s, 5),

s=0,2 s=0,2

1 miSs wiSs s

5 (1BG2) V0P B2 00 ) = 7 S R B ) = 3 e () T ROV 355, ).
s==+1 s==+1

(3.10)

s+1

These define two NSNS and two RR boundary states. The sign factors (—)2 or (=) arise
from exchanging states by R('?). The above states with S = 1 can satisfy the boundary

condition (B-g) when suitable states in the twisted sector are added, whereas the states

with S = 0 cannot. The quartet of permutation boundary states is thus given by

12 (12)
|B(12)>NSNSi =5 Z p+(h <|B( )> + |B > ) )
hEH

B0 e = 5 3 o (h) (1B(2) ~ [BU9)) (3.11)
heH

where H = Zy is the stabilizer group generated by 119, and p; (p—) is the trivial (resp.
nontrivial) character of H. They can actually be rewritten in a simple form,

B12) = RUY(|B)

NSNS+ NSNS+

B e = IR (1B) ). (3.12)

RR+

)®2

)
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The overlap of the states |BU?)) .. with the ordinary branes [BM®)  is always
given by the character of Ramond representation in the loop channel,

(BO@|e-HBODY - \NS=(9i/1) — R (il/2). (3.13)

NSNS, e

Here the characters are those given in (B.3) with v set to zero. This is easily seen to be
consistent with the boundary condition on supercurrent.

The construction of branes corresponding to cyclic permutations of lengths N > 3
goes in a similar way. The boundary states are sums of the states |BT)", |BT, ,)" over the
twists h € (Z2)N~! with suitable weights. There are two distinguished weights for which
the boundary conditions on fermions are all appropriately aligned. It also turns out that
one has to choose S =1 for all spin structures when the cycle has even length.

3.2 Orientifolds

We start with constructing the orientifold of a Dirac fermion theory via Zs orbifold of
U(1)2 theory. Since the choice ¢ = 0 is somewhat unnatural, our starting formula is (2.39).
Defining the basic parity P by the action ([L.F) on Dirac fermions, one can consider the
quartet of parity symmetries e/’#€fL P defined by the action on fields on a strip,

(ePREFL PYpE (o, t) (eFREFL P)~1 = Ee_”/QIZJi(W —o,t),

~ A 3.14
(eFREFL PYopE (0, t)(eFREFL P)~1 = eet™/2¢% (1 — 0, 1). (3-14)
The quartet of crosscap states is constructed by applying the formula (2.32),
(=) P) = [Cysnss = 5(1€0)VD — i[€2) V)€,
|(_)FRP> = |e>NSNS— = %(|GO>U(1) +i|e2>U(1))6_w, (3 15)
|P) = [Crs = 5(ICHVV + €)W, '
()FP) =1 = 5(1€)UM —je_)U),
where the PSS and crosscap Ishibashi states are related by the standard formula
(2
P 6 iwSs
Cs)VD = 55 1@ shVD, Py, = 2T, 3.16
‘ S> ; \/S_Os ‘ 7S>> ) S \/ie 4 ( )
The normalization was chosen to satisfy
C — ¢m(LotiBF )| B — TIBFE C; 0NUM £ 4 |E; 2)UM)y,
NSNS+ ] 1 NSNS+
|G>RR+ = B%W(L07§)|B>RR+ = [ 1>>U(1) + |e;_1>>U(1)’ (3.17)
€ = €TOTIB) = |G 1)V +ife; —1)v.

Note that these relations ensure that the crosscap condition on fermions are automatically
satisfied on the crosscap states.

The arbitrary phase e*? in the definition of NSNS crosscaps changes the action of
NSNS parities on RR states uniformly by a factor e¥2%%. Such a renormalization is impor-
tant in constructing orientifolds in superstring theory with real tension. In the following
we work with the choice

s
ﬁ_17
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so that the NSNS crosscaps have real overlaps with the ground state.

We next construct the permutation crosscap in the orbifold U(1)®?/(Z2)? by applying
our general prescription given in the previous section. Our starting formula is an adaptation
of the formula (R.73) to the orbifold of U(1)3 theory with ¢ = 0,

S .
Wi g Pem) = > %R&m 1C;s + 2¢1, 5 + 209)) e (2h2e1 T2hs—hastne, ~hainey) (3 18)

S Os

which has the correct overlap (R.6§) with the diagonal brane in twisted sectors,

|B( (P11h2)° Z gSs <(>12) |B;s + 2¢,s)).  (c=0,1) (3.19)
0s

By summing over them weighted by appropriate characters of (Zs)? we find

1 C C: & C:
|e(12)>NSNSi ~ 9 Z [t abs? Pom) (£) 2 = R(12)(|G>NSNS:I:)®2’
c1,c2=0,1
c(12) _ 1 C1,/,C2 c1 c2 _ ; p(12) ®2 (3'20)
| JRre = i§ Z [T 5 PLm) (£) 7 (F)? = i RED(|€) e )7
c1,c2=0,1

3.3 Parity action on states

The Mébius strip amplitudes of U(1)2/Z2 theory satisfy

NSNS, e <B’ch’e>NSNSi = NSNST <e’ch"B>NSNS,e7 (3.21)
RR,e <‘B’ch’e>RRi = RRT <e’ch"B>RR,—e7

from which one can read off the action of parity on some closed string states. The NSNS
parities map |0 ® 0), |2 ® 2) to themselves, whereas the RR parities both map | + 1 ® F1)
to +i| F1®@ +1).

The action of parity can also be found from the Klein bottle amplitudes. For example,
the eigenvalues of (+)f P on RR states are read from
ClelmmHetimdo @) = +ix® (r,v) = xR (). (T =-1/1) (3.22)

RRF ( RR+

The parameter v plays the role of a regulator to make amplitudes nonzero. In the tree chan-

nel description of Klein bottle, a nonzero v makes the amplitude finite because e™*/0|@)

satisfies the rotated crosscap condition, o
(fr +ie™ETYE N RNR) = 0. (3.23)

In the loop channel, v twists the periodicity of the fermion on the circle as
PHCET) = —ePTYEQ), (G = e, (3:24)

so that their modes ;f, 1&? satisfy r € Z F v. This in particular resolves the degeneracy
of RR ground states: |£1®=1) have Ly = Lo = % + 5. The one-loop partition sum in
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such a spectral flowed sector should be described by characters with arguments (7, v7’).
From (B.292) one finds

() P|+1@+) = £]|+1 ®+),

(BH)FP-10-1) = F|-1®-1).

The action of parity thus found is summarized as follows,

P0®0) = [0©0), Pl+1@+)= |+10H),
*x P0®2) = i200), Pl+1e-1)= i—-10H), (3.25)
* P2®0) = —ij0®2), Pl-1®+)=—i|+1®-1),

P2®2) = —[202), Pl-1®-1)= —|-1-1).

The equations with x are not obtained from M&bius strip nor Klein bottle, and are chosen
by hand so that PUP = U is satisfied. The analysis of Klein bottles also determines the
action of NSNS parities and various fermion number operators on closed string states. The
fermion numbers Fg, Fy, and F' are implicitly defined by the formulae (3.15). The operators
(—)FrFe take (+1) on both of |0 ® 0) and |1 ® 1), and their values on other states follow
from the fact that W, T carry the corresponding fermion number. It also turns out that

(—)FeHERHE — 1 on NSNS states, (—1) on RR states. (3.26)

It is a simple exercise to check the action of permutation parity on closed string states;
the crosscaps |C12)),, indeed correspond to the parity Pm, 7 = (12) and its three cousins
dressed by fermion number operators. In checking this, note that 7 gives rise to (4) signs
when permuting the states of two U(1)2’s as (R.61)).

4. N = 2 minimal model

In this section we study the permutation branes and orientifolds in products of N = 2
minimal models, which are basic building blocks in Gepner’s construction of worldsheet
theories of superstring. The N = 2 minimal model at level k, which we denote by M (k), is
known to be described as simple N = 2 supersymmetric LG models of a single chiral field
X with superpotential X**2 and a Zj_» symmetry,

v o X — et X, (4.1)

To construct boundary and crosscap states satisfying suitable conditions on N = 2 super-
currents, we start from the rational minimal model or the coset model

S/U@k ® [T(T)z/ IT(1\)k+2- (4.2)

Since all the constituents are purely bosonic, the construction of boundary or crosscap
states of the section | applies without any problem. On the other hand, the above LG
models (which we simply call “N = 2 minimal model”) are known to be described as

different cosets,

o —

M(k) = SU(2), ® (Dirac fermion)/ @k-{—%
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so these two cosets are related by the same Zs-orbifolding as was discussed in the previous
section.

The representations of rational minimal model are labelled by three integers (I, m,s)
specifying the properties under the affine SU(2), U(1)x+2 and U(1)2 respectively. Namely
they take values

0<I<k, mo~m+2k+2), sx~s+4.

The labels are further restricted by I +m + s € 2Z, and subject to the field identification
(I,m,s) ~ (k—=1I,m+ k+2,s +2). Their conformal weight hy,,s is quadratic in (I,m, s)
modulo integer,

I(1+2)—m? 2

4(k 4 2) + g - 9(l7m7 8)7 9(l7m7 S) € 7. (4.3)

hlms =
The functions 6(1, m, s) and 0y,,s = ™ (:m:5) are nothing but the improvement of conformal
weight discussed at section and equations (P.34), (B.39). See [[] for their precise values.
They will be frequently used in constructing crosscap states.
The theory has a U(1) R-symmetry, and the states in the representation (I,m,s) all
have the same R-charge modulo 27Z,
m

Jy =
7 k42

(mod 27Z). (4.4)

| »

The representations with [ = 0 are simple currents g,, ;. They simply shift the m and
s quantum numbers when fused with other representations. The simple current ¥ = go o
generates the group Zs, and the orbifold of rational models by this Zs (with ¢ = 0) gives
the N = 2 minimal models. The simple current v = g2 9, on the other hand, generates the
group Zj,,2 which is identified with the phase rotation of the LG field ([.T]).

Our aim in this section is to construct quartets of boundary or crosscap states in
minimal models and their products corresponding to different spin structures. In terms of
the worldsheet N = 1 supercurrent they are characterized by

(G, FiG_,)|B),, =0, { reZ+1 (Y =NSNS) (45)

(G, Fie'™G_,)|C),, =0, reZ  (Y=RR)

The signs are flipped when the states are multiplied by the operators (—)f® or (—)fZ,

In N = 2 SCFTs, one can instead use the operators e/ or ™o to flip the sign, where
Jo, Jo are the right, left-moving R-charges. Moreover, the NSNS and RR states are related
by spectral flow. Let us denote by U a combination of left-right spectral flows acting on
the generators of two N = 2 SCAs as

U{nU_ J + 5n05 UG:l:U ! G n+1/2’ UL U~ L= n"—%{ %61107 (46)
UJ,U™t = J, ——5n0, UGHU ' =Gy ULU ™ = Ly — 5.Ju + §65,

U maps a closed string state in V) ,,, s @V .5 to a state in V) yy41 641 ® Vi m—1,5—1. 1t is easy
to see that U or Ue~""/0/2 map the NSNS solutions of boundary or crosscap conditions to
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RR solutions. We assign a phase ¢ to each of the quartet states as follows,

U"B>NSNS+ = ‘B>R,R,+e_i7TSO(‘B) ?
Ue 0/2|@) = @), e O, (4.7)

NSNS+

In type II superstring theory, the phase ¢ of D-branes and orientifolds characterizes the
unbroken spacetime N = 1 supersymmetry.

4.1 Boundary and crosscap states

Boundary or crosscap states | By, ar,5), |Co,a,s) in rational minimal models are constructed
from Ishibashi states |B;l,m,s)), |C;l,m,s)) in the standard way. The Zs-orbifolding re-
organizes them into solutions of suitable boundary or crosscap conditions on supercurrent.
For boundary states, we define the Ishibashi states solving the boundary conditions on

supercurrents as follows,

|B;l?m>>NSNSi = [B;1,m,0)) £ [B;l,m,2)),
|B;l,m)pry = |B;l,m, 1) + |B;1,m, —1)), (4.8)
IB;l,m) . = —t|B;l,m, 1) +i|B;l,m,—1)),

whereas for crosscaps the appropriate combinations of Ishibashi states are

1C; L, M) yonse = emi(Lofh“”O)UlmO B3 1, M) nsns> (4.9)
€L m)gre = 6m(LO_hlml)O'lml |Bs 1, m) g s

where 07,5 = €70(m9) is given at ([£3), or more explicitly

|C; 1, m)) Oimo |C; 1, m, 0)) £ iopm2 |C; 1, m, 2),

NSNS+
|e;lam>>RR+ = Olml1 |eal,m’1>> + Oim—1 |eal,m,_1>>a (410)
IC L, mY) pn. = —t01m1 |C;1,m, 1)) + toy,—1 |C; 1, m, —1)).

The D-branes and orientifolds in N = 2 minimal model are given by a sum over Zs-orbit
of rational boundaries or crosscaps [ff, [[J]. In terms of the above Ishibashi states they read

1~ St
‘BL7M>Y = _Z ‘B7l7m>>Y7

2 /S
p.tm 1
Car)y = 5”2“ o el mY), = 3 Z ’“‘“’”2 G 1, m)),
(t,m) Sof)m Lm) 1/ Sof)m
M Mi1
BM,NSNS:I: = Fi(—)2, ﬁM,RRi =(=)"2 . (4.11)

Here (I,m) runs over integers 0 <[ < k, m ~m+2k+4. The S and P matrices are twice
the product of those of SU(2); and (U(1)g42)* theories,

. /
_ /= (41 +1) _ 1 jwmm
Sw =/ Fresin Ty Smm' = 7€ ' (4.12)
2 .
po— A D) b e
W =\ k2 %+1+1 2k+a o tmm’ = T A5
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The coefficients 3, are introduced mainly for later convenience, but it also has some
physical significances. For one thing, they make the states |Car)ygns. Periodic and [Cas)pps
anti-periodic under M — M + 2k + 4, so that the shift of M by 2k + 4 is regarded as the
orientation flip. It also preserves the action of simple current « on crosscap states, so we
have

YIBram)y = |Brm+2)ys  VCwm)y = [Crria)y- (4.13)

The spectral flow U for N = 2 minimal models is identified with the fusion with the simple
current gi 1. The boundary and crosscap states of minimal model are then shown to form
the following quartets,

(1+ ™) (1 + ™ PN BL ar)wonsy = [BLM)wsnss + BLM1) xsns_
+|Brm)rrs + 1BLm+1)re-
(14 ¢™0)(1 4 ¢ Te™ "2 |Car)yanss = Carxsnss + €A +2)xsns.
HCr—1)pr, + [Crrt1)pn_ s (4.14)

with (B v) = k+2, e(Cnr) = Ai+4 +

N[

4.1.1 Boundary states in g;2 o twisted sector
When £ is even, the boundary states with L = k/2 are fixed by gr122 = 7. We define the
boundary states sitting in n-twisted sector [@],

o k/2ms

~ 1 k/2MS
Brjoans)" = 5 D~ B §.m, s,
k/2ms
S; k/2ms _ 2SMmSSSef%r(MfS+mfs). (415)

k)2 MS

The boundary conditions on supercurrent are solved by the following linear combinations
of Ishibashi states,

’% >>NSNS+ = g’m 0>> %7m72>>n7
5. m

>>NSN87 = i|§,m,0>>7l —|—i|%,m,2> ",

. . (4.16)
|25 >>gR+ = Z|§am51>>n_l|gama_1> 7]’
Eom)n = i|5, m, ) i & m, 1),

Note the sign difference in taking linear combinations as compared to (f.§) due to the
difference in Grassmann parity. The corresponding quartet of boundary states is given by

o k/2m
k/2M
[Bro)l = —Z /T B: &, m)2, (4.17)
where _
S = 2Snme™ T M), (4.18)

After the orbifold by Zs is taken, there is no distinction in labelling the twisted sector
by gr42.2 or gri2,0. We therefore use the symbol 7 for the simple current giy 2 in what
follows.
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4.1.2 Tension and charge

The tension and RR charges of D-brane and orientifolds are given by the overlaps of the
boundary or crosscap states with the NSNS and RR vacua. We denote the NSNS chiral
primary states and RR ground states as,

) = |(,L,0)® (I,-1,0)), |l) = [(LI+1,1)®((,—1-1,-1)). (4.19)

The overlaps of these states with boundary or crosscap states read [[J]

. e% sin W(L:1)§l+l)
inM +
<lR|BL,M>RR+ = ekt - <lNS|BL7M>NSNS+ = )
k2 g 704D
2 k+2
im(2m—I— 1)+m—
<ZR’62m_1>RR+ =e 2k z . <lNS‘62m>NSNS+

(lg|Br 2merkt1—(oym )pg, (K even),
= o (4.20)
<lR|B#7%>RR+ (k‘ Odd).

Tensions are therefore given by

. om(L+1
(Oxs|Br,M)nsnse = Tosin (k:Q ) )
im (=)™
Toe 2+4 | (k
(OnsCom)nsnse = 0¢ - (k even) (4.21)
Tp cos 577, (k odd)

N

where Ty = (R;Q sin k+2) .

4.1.3 Parity action on closed string states

Klein bottle amplitude gives a lot of information on the action of parity on closed string
states in minimal model or its orbifolds. We take an arbitrary orbifold group I' C Zgo
and consider orientifolds in the orbifold,

Car)y \/T;e:ryemm eXp< 27””7“). (4.22)

The parameter 7 labels the dressing by quantum symmetry that multiplies phases to differ-
ent twisted sectors, and 2r has to be even for NSNS states and odd for RR states because
of the (anti-)periodicity of the crosscap states in M. The parity Py, corresponding to
|CAr)rry> a8 well as its cousins, are in general all non-involutive and square to some
quantum symmetry. The action of Py, on closed string states has to be of the form

Parpl(m,s) @ (L, 8)) = (10, 5) @ (1, s) exp (ZEmZnmM ) ) o (4 3)

The Klein bottle amplitudes show that this is indeed the case, and moreover p, 5 are given
by
Poo =p1ig = 1, po2=pi,—1=—1 (4.24)
P22 =p-1,-1 =1, po=p-11= =1
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The other three crosscaps with ¥ = NSNS+, RR— are corresponding to the parity Py,
combined with the fermion numbers (—)f2-F#¥ satisfying (B.26). Comparisons of various
Klein bottle amplitudes determine the values of these fermion numbers; the states with
s=35=0or1have (—)"® = (=)L =1, and their values on other states follow from the
obvious rules.

Using these results one can derive the action of parity on boundary states. For those
in the untwisted sector we have

(_)FLPM,r’BL7M>NSNSi - "BL,MfM>NSNS:t’ (4.25)
Pir | Brm)ere = —IBr ir—am)ars-

This agrees with the transformation law obtained from Mobius strip amplitudes ([.7). The
boundary states in 7-twisted sector are transformed as follows:

(_)FLPM,r’Bk/27M>ZSNSi - :Fiei?rr‘Bk/2,M*M>ZSNSi’ (4 26)
PiroBrpang, = € Broii—m)pp.

4.2 Permutation branes

It is straightforward to construct permutation branes in the tensor products of N minimal
models. We start by the permutation boundary states in the product of N rational minimal
model and take (Zy)"-orbifold. We give the expression for those corresponding to the cyclic
permutation of length N, i.e. 7 = (12--- N).

« S
By, = LN RAZN) |B; (1, m)* V),
’ 2 Im (506 )N/2 N
Qpgnse = L, Qpgpy = N (4.27)

Recalling the case of U(1)2 where we have to sum over rational boundary states of odd
S-labels when N is even, we find that the labels (L, M) obey

L+ M = (even) for NSNS+, RR+ states,
L+ M = (odd) for NSNS—, RR— states,
(N even) = L+ M = (odd) for all states,

(N odd) =

The simple current ®,7y,* shifts their M-label by 2> v,. In particular, the simple currents
with >, v, = 0 mod (k + 2) fix the boundary states. The states ]B(Ll7']'\'4N)>Y+, ]B(Ll"]'\ﬁ)N>Y7
form a quartet with the phase ¢ = k =t =N N

The RR charges of permutation branes are given by the overlaps with the states ]lgN )

inM(l41) | in(1—N)
sin TEALIED 0= 5

<l®N‘B(12 N)>R,R,+ = N . ow(l+1 (4.28)
(552)!73 (sin BV
The tension is given by
12N N_j, . o -X L+1
OZNBIT ™ honsy = (552)% ! (sin £Z5) % sin TEEL. (4.29)



4.3 Permutation orientifolds

Here we construct the permutation crosscaps for tensor products of two identical minimal
models through the (Zy)2-orbifold procedure. Denoting by 11,2 the simple currents gg o in
the two copies of minimal model, we sum over the following crosscaps (with 7 = (12))

1 S Ilm s+2co

9105 Prasm) = 5 D =g RE1C; (s 4 21), (s s 4 2))
l,m,s

X €xXp & {2h0,0,201 + 2hl,m,s - hl,m,s—l—ch - hl,m,s+2cz} (430)

with appropriate weight to obtain

C: & C S i us
|e7r NSNS£- Z |¢ ¢22PM07T>( ) e =2 Z SO%R |e l m)®2>>NSNSi
00
5 im 2 (4.31)
’eﬂ RR+ i Z W} ¢§2PM 17T>( ) (:F)CQ = Z SolmRW‘e l m)® >>RRi'

Note that M is even for NSNS states and odd for RR states. One can furthermore con-
sider the parities v;'752 Pp,s which are non-involutive for general v 5. The corresponding
crosscap states are obtained by applying the formula (2.73),

ILym4vi+veo
«

T SO S M~+v1+v: T
O o M)y = 7YZSTWR G (I, m + 201), (I, m + 210)),.  (4.32)

I,m

Here o =1, « = 1.

NSNS+ RR+

We thus constructed the crosscap states |6’ M, 12) Mo ) for different spin structures; the
labels M 5 are both even and periodic under (2k + 4) shift for NSNS crosscaps, while they
V1 _ Vo

are both odd and anti-periodic for RR crosscaps. The simple current ~;" s> shifts both of
the labels My, My by 2v; 4+ 2v5. They are organized into quartets satisfying

_ 12 12
(1+ ™)1 + e Ue™™0/2) 007 ) nse = 100 i nsnss 187 o ay o) nens. (4:33)

+’6M171,M271>RR+ + ’6M1+1,M2+1>RR—7

with ¢ = % — % The RR charges and tension are given by
91 5(12 9 in(M—1)(14+1) _ in
U1 e = (IBOA Dane =€ 7722,
2 2 (12
(OZ21C8 A wmse = (01BN wnss = L. (4.34)

The permutation crosscaps with My # My are tensionless, but they have nonzero overlaps
with RR vacua sitting in twisted sectors. Let us define

) = |(LI+1,1) @ (1,1 + 1,1)). (4.35)
Then one finds
wi(12) .
((k = l) lt |e§\/[ M+21+2>RR+ = —t (4.36)
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5. Gepner models

We apply the results of the preceding sections to the construction of permutation D-branes
and orientifolds in Gepner models, which are type Il superstring theories defined from
orbifolds of products of N = 2 minimal models and affine U(1)y models [i.

Gepner’s original construction of the models starts with a product of r rational minimal
models and d copies of affine U(1)2 models, and then takes its orbifold by a group of simple
currents. A subgroup Taso ~ (Zg)”d*1 of this orbifold is formed by even monomials of
the simple currents 1, ---,¥,14 discussed in previous sections that shift the s quantum
numbers by two. As we have reviewed in detail in the previous sections, this is equivalent
to taking the product of r N = 2 minimal models and d Dirac fermions and then summing
over spin structures. For constructing D-branes and orientifolds, this just amounts to
taking the product of boundary or crosscap states with the sector index Y aligned. In this
way one can focus on the r minimal models describing the internal manifold separately
from the part describing the noncompact spacetime.

It only remains to explain the “rest” of the Gepner’s orbifold group. Gepner models
describe the CFT on certain Calabi-Yau D-folds at special points in the moduli space in
terms of orbifolds of products of r minimal models. The central charges of constituent
minimal models therefore add up to 3D,

T

3kq
=3D. 1
ik (5.1)
a=1
We also assume without losing generality that
r—D = even, (5.2)

since we can add minimal models with £ = 0. The product of minimal models is orbifolded
by I' = Zyg (H = lem(k, + 2)) generated by Yay = I1,—; 7a to ensure the integrality of
R-charge. The orbifold is taken according to the standard simple current prescription of

section with 5
ab

ko +2°
Gepner model ®)_; M (k,)/I" is mirror to a different orbifold ®/_; M (kq)/T'mir, where

q(Yas W) =

Ma . ma
P = {Ha% ; Zka+2 EZ}. (5.3)

In particular, B-branes (B-type orientifolds) in the original Gepner model are mirror of the
A-branes (A-type orientifolds) in the mirror Gepner model and vise versa.

Examples. We denote various Gepner models by the set of integers (kq +2). Two main
examples of Gepner models we discuss in this paper are the model (55555) corresponding
to a quintic hypersurface in CP*, and (88444) corresponding to an octic hypersurface in
weighted projective space WCP%,LZZ?‘ These models have been extensively studied because
of small hy 1 of the corresponding Calabi-Yau spaces.
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We describe the D-branes or orientifolds in superstring theory by suitable linear com-
binations of quartet states of the worldsheet CFT,

2|B> = |B>NSNS+ - |B>NSNS— + |B>RR+ - |B>RR—’

. . (5.4)
2|e> = _Z|G>NSNS+ + Z|G>NSNS— + |e>RR+ - |G>RR—‘

Here the quartet states are given by the products of the states from the internal and
spacetime CFTs,

1B)y = B @[B)Y, [€)y = [ey ®[e)F. (5.5)

The spacetime parts |B)S', [C)5t contain the fields for R?*™2 as well as ghosts [[[J, f], and
are normalized to produce consistent one-loop amplitudes. In particular, they satisfy

(_)FL|B>Y+ = |B>Y—’ (_)FL|G>Y+ = |G>Y_’

d+1 . d—
€), = 2 expin(Ly— hif)]3>y. (h;tS = —%, h;t = T‘l) (5.6)
The normalization of the internal parts are fixed from the integrality of various one-loop
int
;\IIISNS;t’

eyint . have real overlaps with the ground state of the internal CFT. Such overlaps

appear as coefficients of the dilaton tadpole and are regarded as the tensions of D-branes

amplitudes. Alternatively, it is determined by requiring that the NSNS states |B)

or orientifolds. The overlaps with various RR ground states measure the RR charges. The
sign flip of the RR part of |B) or |C) therefore gives anti-D-branes or anti-orientifolds.

One can compute cylinder, Mobius strip and Klein bottle amplitudes between various
D-branes and orientifolds as overlaps of the states |B) and |C). In doing this, remember
that the simple dagger of a ket state for a D-brane or orientifold gives a bra state for
anti-D-brane or anti-orientifold.

Tadpole cancellation. Consistent configurations of D-branes B; and orientifold € in
superstring theory must be free of RR tadpoles [@, @], namely, the tadpole state

7 = e+ 1B, (5.7

must not have any overlaps with massless RR scalar states. The non-vanishing tadpoles
of massless NSNS scalars do not lead to inconsistency [2]. However, the absence of RR
tadpoles automatically guarantees that NSNS tadpoles also vanish if the configuration of
D-branes and orientifolds preserves a spacetime supersymmetry. The spacetime N = 2
supersymmetry is related to worldsheet spectral flows in the left and right-moving sectors,
and the phase ¢ (f.7) determines the N = 1 supersymmetry unbroken by the branes or
orientifolds. So |T) preserves spacetime supersymmetry if all the boundary and crosscap
states in |T) are labelled by one and the same phase ¢.

The absence of NSNS tadpoles for supersymmetric tadpole-free configurations is shown
by noticing that the massless NSNS and RR states are related to the chiral primary and
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RR ground states in the internal CF'T, and are therefore paired up by spectral flow. For
each of such pairs we can show

(Ix|Bi) ,

(|Byy 2T

<lR|e> s . 1 intl _ Lstl _ hst _ .

1 [C) = iexpim [ — 50" (lys) — {L3 (Ixs) — (M8 )ns}] = expime. (5.8)
NS

Here we used £ Jin* 4 L5 = LISt = 0 for the state Iiq of our interest, and chose a suitable

normalization for /,. It immediately follows from this that
re{lT) = eiﬂipNSNS U7, (5.9)
for tadpole states |T) preserving spacetime supersymmetry characterized by the phase (.

Remark. in our convention (R-1) of boundary or crosscap conditions, the N = 2 super-
currents G are glued to G* along the A-branes or A-type orientifolds though they are
usually called B-type conditions.

5.1 Permutation D-branes in Gepner models

We turn to construct and classify permutation branes in Gepner models. They were con-
structed in [[[d] and studied in [R]-PJ]. Here we give a construction of them based on
the simple current orbifold prescription, paying particular attention to those labelled by
L = k/2 which require a special care. We study the A-type branes first, and then study

the B-type branes using the mirror description.

5.1.1 A-branes

A-branes in Gepner models are labelled by a permutation = and (L., M,) withc =1, -, [x],
where [rr] denotes the number of cycles in 7 and || the length of the cycle .. The branes

with trivial stabilizer group are simply given by summing over Zp-images,

Ary 1 x _ 1 ] (e
‘BL,M> = \/—F Z ‘BL,WE’A)(M)> = ﬁ Z Qe=1 BLC,1\4C+21/||7rc||>' (5.10)

vEZL vELH

Here and in the following the index for spin structure will be suppressed whenever possible.
The label (L, M) contains some redundancy because different values of M related by Zp-
shifts label the same D-brane, and the following change of the label (L, M)

maps |B€’K/I> to its anti-brane.
Some A-branes with special choices of 7 or L have nontrivial stabilizer groups. The
boundary state (5.10) are invariant under ’ygl) (H' < H) if

H' ||

12 € Z for all c. (5.12)
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Such branes should be defined as sums over twists as well as over images. Moreover, if H’
is even, the boundary states are invariant also under W(Z ;/ 2 if

(¢

Hl
L.= — for all ¢ such that w, = sl
2 ke +2

These D-branes are generalization of short-orbit branes discussed in detail in [[J]. To see
how the enhancement of the stabilizer occurs, note first that 'y(lj ;/ 2 shifts M, by k.+2 when

odd. (5.13)

w!, is odd, and acts trivially on other M,.’s. Therefore, with the help of the maps F, 753/2
maps the brane satisfying (p.13) to itself or its antibrane depending on how many of w/,
are odd. Since there are always an even number of odd w/, under the condition (5.9) the
H')2

. . . . K (A) -.
To write down the branes with nontrivial stabilizers, we first introduce the boundary

states in twisted sectors of the product of N minimal models following (R.41)) and (R.43),

N
BE5 ) = YZ Slm W7 1B m) ),

branes satisfying (p.13) are always mapped to themselves by v

B2V gm0 = ROZN) B (1 4+ 200) @ (L + 4p) @ - © (Lm))y- (5.14)

Here v, is defined in ([£.27). The label of twisted sectors u satisfies uN € (k+ 2)Z. When
the level k is even and uN € (k +2)(Z + 3), we define

§ k/2m
N a k/2M (12
By ) = 5. (Sk/2/,m)N/2 BN £ m) ), (5.15)
l,m

‘%(12---N);%,m>>£/u) _ R12 -N) ‘B (2,m+2,u)®(g,m+4u)®'“®(§7m+k+2)">>y-

The tilde will be omitted in what follows unless we need to distinguish the states (b.19)
from (p.14). The boundary states invariant under ’y(hA) (hH' = H) take the form

A7r,p _ 1 (7] e (uh) 2mipuh
|B > = \/ﬁ Z Q= |‘BLC7MC+2VH7TCH> eXp( H ) (516)

VELy, ,LLEZH/

Here p € Zy specifies a character of the stabilizer group.

Example 1: (55555)

The m-permuted boundary states have nontrivial stabilizer when [] aer, Yo = 1 for

all cycles of m, namely, all the cycles of m have the lengths divisible by 5. Therefore,

= (12345) is up to conjugation the only case with nontrivial stabilizer H = Zs. The
untwisted stabilizer is H itself, so the boundary states are sums over Zs-twists.

Example 2: (88444)

There are D-branes with various stabilizer groups. Generic non-permuted A-branes
do not have stabilizers, while those with L; = Lo = 3 are invariant under fy?A). Generic
m-permuted A-branes are invariant under 'y?A) when 7 permutes ¢ = 1,2. Some of such
D-branes are invariant under W(QA) if their L-labels satisfy (5.13). For all these cases, the
untwisted stabilizer agrees with the stabilizer itself.
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T H (generator) U (generator)
(1H)(2)3)(4)(5) 1 1
(12)(3)(4)(5) Zs (1173) Zs (1173)
(12)(34)(5) (Z5)? (mivs,¥374) (Z5)? (mivs,¥374)
(123)(4)(5) (Z5)* (m75,7273) 1
(123)(45) (Z5)* (173,725, 7473) Zs (vavs)
(1234)(5) (Z5)* (73,7275, ¥374) Zs (m57374)
(12345) (Zs)* (172,725 V3745 1473) 1

Table 1: B-branes of the model (55555) and their stabilizer H, untwisted stabilizer U.

5.1.2 B-branes

We would like to study B-branes in Gepner model using the mirror description with the
orbifold group ' of (B.3). The label of D-branes consists of a permutation 7 and quan-
tum numbers (L., M,.) (¢ = 1,---,[n]), as well as a character of its untwisted stabilizer
group. Since the label M has a large redundancy due to the shifts by elements of I'y;,, we
sometimes use

[7]
H
; MW, (wc =5 2> , (5.17)

There is also a map F. (p.1])) that sends a brane to its antibrane.

In mirror Gepner model there are indeed branes with different (untwisted) stabilizer
groups. We first focus on generic permutation branes with none of L. coinciding with k./2.
They start to have nontrivial stabilizer group as soon as m becomes nontrivial. If 7 contains

a cycle m. = (12--- N), then all the m-permuted branes are fixed by (Z_42)V !,

H D (Ziy2)V " = {715 o ZVZ (ke +2)Z}.

So the generic m-permuted branes have stabilizer H = ®[C7;}1(ch+2)”“”*1.

By analyzing its action on twisted sectors using (2.44), one finds that none of the the
stabilizer (Zg, 42)N ™! contributes to the untwisted subgroup U for odd N, while a Zj,_ o
subgroup generated by 717, L. -7;[1 contributes to U for even N. As an example we list
the permutation B-branes of the model (55555) with their (untwisted) stabilizers in the
table below.

The permutation branes with nontrivial untwisted stabilizers are made from permuta-
tion boundary states |B(Llﬁ‘2N)’p> in the orbifold M (k)" /T, where N is even and

Tiir = (Zra2)V ' = {31 9%Y1D va =0 mod (k+2)}. (5.18)

The label p specifies a character of the untwisted stabilizer Zj, o generated by 175 Lo 7&1.
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We find it convenient to define the boundary states in terms of Ishibashi states as

(12--N),p 2mipy

1 o g lm
B = G o (B) 5 (e

><R(12~~~N) |Ba (l’m + V) ® (l’m - V) Q- (l’m - V)>>Y’ (519)

where a,, is defined in ([.27). It is easy to check the following,
12--N), 2.-N1),— 12:-N), 12--N),
Bia ) = BT BN = B (5.20)

However, due to the non-standard definition of the Ishibashi states in twisted sectors, p
has to be integer or half-odd integer depending on whether M is even or odd. One also
finds

|BL M >NSNS:|: - |‘Bk7L,M+k+22 >NSNSi’ (5 21)
| LM >RRi _| k—L,M-+k+2 >RR:|:‘

As an example, the permutation B-branes in (55555) model for 7 = (12)(34) is given by

B,(12)(34), p, p"" 1 12), 34), o' 5
Boar SV = 2 YT B @ BE N ) © 1B aprpn) (5:22)
v+v/'+v €57

Next we discuss the enhancement of stabilizer group when some of k. are even and
Le = ke/2. A permutation brane labelled by 7 and {L1,---, L7} is invariant under the
following simple currents

(i) va7; ' (a,b are in the same cycle)

5.23
(7)) namp  (a, b are in cycles labelled by L = k/2). (5:23)

So the stabilizer group for a permutation brane gets enhanced by (Z2)" ! if n (> 2) cycles
of 7 are labelled by L. = k./2. The L-label of B-branes is called special (or generic) if two
or more (resp. at most one) of L. coincide with k./2.

It is a little intricate to find out the untwisted stabilizer for these short-orbit branes.
For the D-branes with 7 = id and L, = k,/2 for a = 1,---,n, the boundary states in
twisted sectors should be expressed as products of |By, /2 a1, )y and By, /2,11, )7 . However,

the action of n = ’y% on boundary states in the untwisted and n-twisted sectors differ by

a sign,
MBrjo.m)nswse = HBrjzm)nswses  MBrjzm)snss = —IBrj2m)lsnss (5.24)
NBrjom)rre = —IBrjgm)nrss  NBron)tne = HBrjzm)ns -

So the only states invariant under all the elements (i) of the stabilizer group (5.23) are
those in the untwisted sector and (7 - - - 7, )-twisted sector. The latter exists only when n
is even. The untwisted stabilizer for non-permuted branes is given by

! (n odd)
‘- {ZQ ={1, 11— 7} (n even) (5.25)
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T $(Le = ke/2) L H u
(12)(345) 2 (3,1) | Zg x (Z4)* X Ly Zy (7179)
<1 any Zg x (Z4)* Zs (m173)
(1)(2)(345) 3 (3,3,1) | (Z4)* x (Za)? 1
2 (3,%,1) (Z4)? x Zs Zy (mm3nans)
2 (3, 3, *) (Z4)2 X ZQ ZQ (7717’]2)
<1 any (Z4)? 1
(12)(34)(5) 3 (3,1,1) | Zg X Zy x (Z2)? Zy X Ly (Viv3,7373)
2 (3,1,%) | ZgxZax Lo | Zsx Lo (MV37374,7375)
2 (3,%,1) 78 X Ly X Lo Za x Za (398, v373)
2 (x,1,1) 78 X Ly X Lo Zg x L (1175, 7273)
<1 any Lg X Ly Zs X Ls (1173,7373)

Table 2: Some permutation B-branes in the model (88444).

Generalizing this to permutation branes, one finds the following result. For each even-
length cycle . = (a1, aq,...,a9) of m, denote by ~,. the following simple current

Vre = YarVap Yas " Vag- (5.26)

Then the untwisted stabilizer for permutation branes with L. = k./2 for more than one
cycles is generated by the following:

1. Yr., where 7, is an even-length cycle labelled by L. # k./2,
2. (vr,)?, where 7, is an even-length cycle labelled by L. = k./2,

3. The element

y = (Hm) I |- (5.27)

Le=ke/?2

where the first product is over all a’s belonging to odd-length cycles labelled by
L. = k¢/2, and the second is over all even-length cycles 7. labelled by L. = k./2.
This is an element of ' only when there are even number of odd-length cycles
labelled by L. = k./2.

Interestingly, when L.’s coincide with k./2 the untwisted stabilizer group gets reduced due
to 1 — 2 of the list, and then enhances by 3 of the list.

As an example, we list some of the permutation B-branes, their stabilizers and un-
twisted stabilizers in the model (88444).

Let us pick up some examples from the list and illustrate the construction of boundary
states. We first take the case m = (1)(2)(345), which is a rather straightforward general-
ization of non-permuted branes because all the cycles have odd length. The m-permuted
B-branes split into two when L = (3,%,1). To describe the boundary states in 71137475-
twisted sector, we use the states | By, /2, )" defined at section and their generalization
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to arbitrary odd-length cycles,

~(12...N N k/2,M
Bl ) = B m = Xy Smﬁ s Rz 1B @ (Lm)T)y. (5.28)
l,m

Next we study the case 7 = (12)(34)(5). The untwisted stabilizer group for m-permuted
B-branes gets smaller as the number of L.’s coinciding with k./2 increases. We wish to
understood this in terms of the boundary states defined at (5.19). For generic L the branes
are defined as

B,m,(p.p! 1 12 5
Boa”) = 7 D IBENA) @B ) @ 1B yia), (5:29)
v+2u/ 420" €87
with the integers p, p’ specifying a character of the untwisted stabilizer Zg x Z4. When

some L.’s coincide with k./2, then the sum over orbifold images is partially translated into
the sum over shifts of (p, p’) due to (5.21). When L = (3,1,1) one can write

B (pp)y _ 1 (5)
|BL7M PPy = 1 Z |33 M+2y> ® |B1 M’+2u > By M”+2u”> (5.30)
v+2u0' 20" €87

where we define, for any cyclic permutation 7 of even length,

s (k+2)/2
’Bk}gl\ﬂ = (’Bkﬂ ) E ‘Bk/sz 1 >) ‘ (5.31)

The periodicity of p,p’ thus becomes halved when L = (3,1,1), in accordance with the
untwisted stabilizer becoming smaller for these branes. Note also that the states (5.31]) are
transformed by 7,’s in a similar way as |By, /9 ar) and |By o a7)" of (b.24).

When L = (3,1,0) one can write

Bym(ppe), _ 1 (12), p,+ (34), o'+ (5)
|BL,M ) = 4 Z |Bg M+2V> |B1 M +20 N ® |BO,M”+21//>
v+2v +20" €87

€ 12),
7 IBES) @ IBI) © 1B ). (5:32)
v+20' +20" €87

The untwisted stabilizer is twice as big as the previous case due to the generator 5 (5.27).

5.2 Permutation orientifolds in Gepner model

We next construct and classify the permutation orientifolds in Gepner models. The basic
g 12

building blocks are the quartets of crosscap states |Cps), (E.11) or |(?§V[1)7M2>Y (E:32) defined

before. The A-type permutation orientifolds are constructed as sums of their products with

characters of I'o = I'/(I'T™), where I is the Gepner’s orbifold group and

I'T™ = {gmgr|g € T}.

B-type orientifolds are constructed in a similar way using the mirror description. Below
we give a general construction, and illustrate it in a few examples.
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5.2.1 A-type orientifolds
The orbifold group is I' = Zy and one easily finds that

ITT =T?% = {¢*|g €T},

for any models and any 7. Therefore, I'o = I'/T'? is a Zy for even H and otherwise trivial.
We denote by |C;)y the products of crosscaps |Cas), and \@g\lﬁ) M,)y i minimal models.
The A-type crosscaps in Gepner models are given by their sums,

A, C V| T _ ¢ V| T
N = T2 Iy = SR, (5.33)

with suitable normalization constants c.g, ¢y . The following crosscap states form a quartet,

A A Aym,E AymiE
|GM7T7E>NSNS+’ |GM$;>NSN37’ |GM72;_>RR+’ |GM15>RR7’
E=€-exp <—ZZ:1 kjiz) . (5.34)
with the supersymmetry phase
5
. Cr . (Ma — 1) r+ ’77’

eXpITY = —= exXpiT + . 5.35
PIme = e 0P (; 2k + 4 2 (5.35)

Here |7| counts the number of cycles of length two in 7. The four possible choices of cyg
correspond to orientifold planes OF of positive or negative tension, and their anti-planes.
The label € can take £1 for even H, while only € = +1 is allowed for odd H.

The constant ¢, takes values 1, whereas the correct values of ¢4 depends on the label
€. When H is odd, the tension 7" of the orientifold is given by cys up to a positive propor-
tionality constant so we should set ¢y = £1. When H is even, 1" becomes proportional to

Me

. . — 2
ws (7T b eetTOM) L OMm= (k:c)+ )

c (ke=even,|mc|=1)

T ~ ¢

So the correct choices of g are

H =odd, (e=4) = ¢y = £1, T ~ %1,
H =even, e =4+ = ¢y, ==*1, T ~ cosmOM, (5.36)
H =even, e = — = cyg = %4, T ~ £sinmO.

Orientifolds labelled by different M are related to one another by the global symmetry
generated by simple currents,

(®Z:1’Y(lzja)’ef/i7r7e> = ‘eﬁ/ﬁﬁf% M(; = Mg+ 2v, + 2V7r(a)- (537)

If H is odd, then any M can be mapped to M = 0 by the global symmetry. For even H there
are several choices for M that lead to physically inequivalent orientifolds. An interesting
fact is that, for even H, the involutiveness of parity does not require M, = M. The
condition that the square of parity is an element of I' implies the existence of a mod-H
integer v satisfying

My — My(q) = 2v mod 2(k, +2). (5.38)

Since the left hand side is antisymmetric under a — 7(a) and the right hand side is
symmetric, the only allowed v are 0 or H/2.
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Example 1: (55555) There are three involutive permutations of five elements up to
conjugation, namely 7 = id, (12) or (12)(34). We denote various products of crosscap
states as

e @Iy, = jef) o eff) o ef) o e e,
12)(3)(4)(5 12 3 4 5
ene ), = leli, B e e el m e,
12)(34)(5 12 34 5
Ca )y = 168 © Cilar, ® €y (539

The A-type crosscaps in Gepner model are given by their sums. For the parities to be
involutive, we have to set My = My in the second line and M7 = Moy, M3 = My in the third
line.

Since all the levels are odd, the crosscaps with different values of M are all related to
the one with M = 0 by global symmetry (simple currents). Moreover, I'g is trivial because
H is odd. Therefore, there are just three physically inequivalent A-type orientifolds in this
model ]Gé’ﬂ labelled by three different permutations. The same argument apply to all
other Gepner models with odd H.

Example 2: (88444) In this model there are four inequivalent permutations up to con-
jugation, namely 7 = id, (12),(34) or (12)(34). The orientifolds are also labelled by a
character of I'o = Zsg. In order for the orientifold |6’ﬁ”’6> to correspond to an involutive
parity, the M labels have to satisfy M3 = My if 7 contains a cycle (34), and My = My
or My = My + 8 if w contains (12). Different values of M are related by the actions of
global symmetry, but this time there remain several choices for M leading to inequivalent

orientifolds. The physically inequivalent choices of labels (7, M) are as listed below:

T =id, M = (00000), (02000), (22000),
(00002), (02002), (22002),
7=(12), M = (00000), (00002), (08000), (08002), (5.40)
7= (34), M = (00000), (02000), (22000),
7= (12)(34), M = (00000), (08000).

The crosscaps containing \@g\lﬁ) My Lg) are supported only on closed string Hilbert space

in the y{~3-twisted sector, so they are in particular tensionless. On the other hand, they
do have nonzero overlaps with RR ground states in v{~;-twisted sector.

5.2.2 B-type permutation orientifolds

We study the B-type permutation orientifolds in Gepner models as A-types in the mirror.
The orientifolds are given by summing the crosscap states |C};), of the product theory
over an orbit of I'y,;; weighted by various characters of I'o = i/ (Tmic 7, )

mir

T, C T —
ey = ﬁ > 1€ )y @),

’Y:®aﬂ/ga €l mir

(5.41)
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where y(M) = (My + 2v1, ..., M, +2uv,) for v = ®,y%* € I'nir. Then the following quartet
of states defines a B-type orientifold of Gepner model,

B77 B77 B7 7~ B? 7‘~
’eMﬂp>NSNS+7 ‘GM1£>NSNS—7 ‘eMif>RR+7 ’eM:]l_)>RR—7

§(7) = p(@) exp (~Sho 22

Here p is a character of I'p, whereas p() is anti-periodic in any of v, — v, + kg + 2.

The label M is highly redundant because it has meanings only up to shifts by I'y;y.
There is also a global Zy symmetry of the mirror Gepner model that relates orientifolds
with different M.

Let us discuss the properties of the characters p of the group I'p in some detail. By
definition, p is a character of the group I'yi that takes trivial value on the subgroup

Imie I, The elements of this subgroup are given by v/ satisfying

" 1%
. a Z
(i) Zl el
(i) Vo = Vr(a);

(iii) v, is even for all a labelled by even k, and fixed by .

Characters of 'y, taking trivial value at such s are given by

p7) = J[ e rerEteeme) [ (5.42)

¢ (me=(acbe)) ¢ (|me|=1,ke=even)

Here r. € Zj 42 is associated to the cycle m. of length 2 labelled by k., and the sign
€. is associated to the length-one cycle 7. labelled by an even level k.. Sometimes the
conditions (i)—(iii) accidentally imply that some more v, have to be even, and p depends
upon additional + signs (see the Example 2 below). Finally, some of the parameters (r., €.)

are redundant because of the equivalence p(7) ~ p(7) exp <Z " i’;:ﬁ’g) that follows from (i).

Recall that |(?1€[’7T’p ) is constructed by summing the crosscap states sitting in different
twisted sectors. In the formula (f.42) for characters, the parameters r. assign different
weights to different twisted sectors so that they express the dressings by quantum symmetry
of the mirror Gepner model. Such symmetry are known to map to the global symmetry of
the original Gepner model. In other words, r.’s can be absorbed by a suitable redefinition of
the LG fields X1,...,X,. On the other hand, different signs €. give physically inequivalent
orientifolds since they cannot be gauged away in such a way. In particular, the tension and
supersymmetry phase ¢ of orientifolds do depend on €’s in a non-trivial manner.

Example 1: (55555) There are three inequivalent choices of permutations, 7 = id,
(12), (12)(34). For each choice of 7 there is a unique choice for M up to shifts by I'y,;, and
the global Zs symmetry of the mirror Gepner model. The tension is given by ¢y, up to
some positive proportionality constant, and the supersymmetry phase ¢ is given by (b.39).
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The group I'mir/(Fmir['];,) and the allowed character p for various choices of permu-
27TZ')

tation are given by the following table (we denote w;, = exp “7*

m i/ (Drmie i) p(@)

id {1} 1

(12) Zs wy ") reZs
1261 | @) [T e

The orientifolds labelled by different r, 7" are related by quantum symmetries, so they are
physically equivalent. We thus found three inequivalent B-type orientifolds of this model
corresponding to three different choices of 7.

Example 2: (88444) The orbifold group is I'mir = Zg x (Z4)3, and there are four inequiv-
alent choices for the permutation, = = id, (12),(34) and (12)(34). For each choice of 7
there are two inequivalent values for the label M up to shifts by 'y, and global symmetry
of the mirror model,

M = (00000) or (20000).

The orientifolds are also labelled by the character of the group I'o = i/ (Tinir L7 ). We

mir
determine the general form of the character following the argument given above (w, =

exp 2),
m=id Pe1,€e2,€3,€4,€5 (V) = 611/1 6526536246? = p—517_52753754755(ﬁ)7
T=012)  praaacs® =wg TS~ g0 e aa (),
™= (34) Pre1,€e2,€5 (ﬁ) = (")4_71(1/3_”4)611/1 6526? = Pr—e1,—e2e5 (ﬁ)’
_ — g — —»
™= (12)(34) Prr’e1 €5 (ﬁ) = Wg T V2)w4 rs V4)611/16g5 = Pr42,0'42,—€1,—€5 (V)

(5.43)
In the second and fourth cases above, we have one more + sign as compared to the for-
mula (f.42) due to the accidental effect explained there. For example, for m = (12) the
elements of ['T™ are given by those U satisfying

V1 + v + 2(V3 + vy + I/5) € 87, v = 19, V345 € 27.. (5.44)

These conditions imply that 1 is also even, so we get an additional parameter € in
the second line of (p.43). Although vy is also even, we do not introduce €5? because
vy _ Avi—r2) o
€y’ = Wg €.

Let us compute the tension of the orientifolds we have listed, focusing on the depen-
dence on e-labels. We use various symmetry to set M = (00000) or (20000), ¢; = 1 and
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r,7’ = 0. The tension of various orientifolds then becomes,

1d)((:os 8)4 *(—isin

B.,id,+e€2€3€4€5
T(GM (00000) )

T B ,id, +52€3E4€5)

(e}
M= (20000 )¥0ea,+

e Cy T(ld)(COSS)s *(—isin
(G Jre36465) cNSTéIQ)(COS 8)3 “(—isin §)%,
(

S

00000)

), +eseqes
e 20000) )

B ,(34),+e2es5
T( M=(00000)
5

B ,(34),+e2¢
T (CniZ20000)

)
)
T(GB ,(12)(34), +€5)
)

S

0,

Cxs T0(34) (cos %)2_0‘(—1 sin )¢,

Cxs T(534) (cos & g )

Tém)(‘%) (cos %)1_0‘(—1' sin §)%,

la(

isinZ) "0

M=(00000) Cns

B,(12)(34),+es5

T(Cyp— (20000)

(5.45)

Here o denotes the number of €,’s taking (—) sign, and T are some positive definite
constants. In order to make the tension real, one therefore have to put ¢ = £i%. A useful
relation is (—)* = %, = p(F = 1).

6. Some string theory problems

In this section we wish to study some more properties of permutation branes and orien-
tifolds in Gepner models. One important problem is to find out the spectrum of massless
open string modes. Here we will restrict our attention to the gauge fields on D-brane
worldvolumes and study what gauge group is realized on coincident D-branes, by analyz-
ing the action of parity on D-branes and open strings. Another important problem is to
solve the tadpole cancellation condition and find supersymmetric tadpole-free configura-
tions. The tadpole cancellation in general simply amounts to the cancellation of D-brane
charges against the charge of orientifold. It becomes more and more difficult to solve it
as the dimension of charge lattice gets larger. For type IIA case, we will analyze in a
similar way as in [[ld] and find a few solutions involving permutation orientifolds using the
simple relations between the charges of D-branes and orientifolds in minimal models. For
type IIB we see that the charges of D-branes and orientifolds are summarized into simple
polynomials as was discussed in [[, [[d, 3, [3].

6.1 Parity action on D-branes

We would like to find out here the action of various orientifolds of Gepner model on D-
branes from Mobius strips amplitudes. We begin with the Mobius strips in the product of
r minimal models,

H H !
NSNS+ <Bi7M’q ‘egm>NSNSi = NSNST (Comlq |BY, M’>NSNS+7

RR7< E,M‘qH’egm—l>RR;t = RR:F< 2m— lqu‘BLM”>RR+(_)T+‘U‘+|W" (6'1)

~l7, and M/, M” have the following components,

=> 2ma— M., M=) (2m,—1)— M.

acol, aco,,

Here ¢/ = no
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The minus signs in the second line come from the coefficients 3,, ,,ay in (k11), ({.27)
and ([.39). By taking the sum over orbits of the orbifold groups Zg or I'y;, we find the
Mobius strip amplitudes for A-type crosscaps,

A, HpA A H 2
NSNS+ <BL K/I| |e > €>NSNS:|: = NSNs:F< 2rr71T+62 |q |BL M’>NSNS+ T €Cq
H|pA A H ~
rr_ (B L M’q ‘62117:—51>R,Ri = R,R,:F<62n71r+€1‘q ’BL M”>RR+ '6(_)T+|0|+‘7T|- (6.2)

Here € was defined in () Recalling that cy, was determined so that ecis =1, we
conclude

Ame | Ao Ao’ Lo DY+l +|o
epme - BT BT (MO (63

where o, M’ are defined above and the 4 sign distinguishes the brane and antibranes, i.e.
—3B denotes the antibrane of B. The rule for B-type orientifolds is similar,

Com” © BEy v Brgg - (=)D 5 = 1), (6.4)

where p(#7) specifies a character of T'o (b.41). So the condition for a brane to be parity-
invariant is o~ !7 = ¢ and (L, M) = (L, M’) up to shifts of M by orbifold elements and
an even or odd times of brane identification F. (b.11]) depending on the sign in the above
formulae.

For later use, we study the pairs of brane and orientifold satisfying the condition
(L,M) = (L,M’) up to F. by decomposing into blocks.

Condition for Parity Invariant Branes (PIB) 2. If a brane Bf \; in the theory
®aM (ko) is invariant under CT (Mg = My (q)), the pair (m,0) decomposes into the blocks
listed in PIB [[. For each block of type (1)—~(3) of PIB [,

(1) oc = (@mraz - agnt1), ™ = (ar1a2n+1)(az2a2y) - - - (anany2),
(2) oc = (amaz---azy), m= (aza2n+1)(azazy) - (ananyi2),
(3) Oc = (a1a2 : “a2n), ™= (a1a2n)(a2a2n) T (ananﬂ),

the labels (L., M.) have to satisfy

(I) L. = any, M, = % —c(tot) or % —c(tot) + ke + 2, M(tot) _ M
_k _ 17 (tot) ket2 c = Z a
T (II) Lc =73 Mc — oi¥c + 2 acoc

and for each block of type (4) of the list,
(4) ocow = (ar---ay)(ay -~ ay,), ©=(aray)(azay,_4)- - (ana}),
the labels (L, M.), (Lo, M) have to satisfy

(IH) Le=Le, Me+ My = M(tot)’ (tot Z M, Z M
or (IV) Lo+ Ly =k, M.+ My = M®Y 4k, + 2. -

acoc aco

Thus the pair (Bi,M’ 6’71{—/1) decomposes into eight different kinds of blocks,

DM, W, @1, @), B, Gy (D, (Drve
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Parity and supersymmetry. The action of parity on D-branes obtained above is
such that the parity reversal of a supersymmetric configuration is again supersymmet-
ric. Namely, if |B) preserves the same supersymmetry as |C), so does Pe|B). To see this,
recall the supersymmetry phases for A-type branes and crosscaps,

Ao - -1
expmcp(BL N) = expim <ZL ]1% _ Hag > ’
expimp(Cp™) = - expin <ZZ Mooty \w|+r>7 6.5)

where |o.| denotes the length of the c-th cycle of o, and |7| denotes the number of cycles
of length 2 in 7. Similar expressions hold also for B-types. Also, recall that ¢, = £1, and
that ¢4 is determined from the group character as follows,

—,

cise =1 (A-type) ; cisp(ﬁ =1)=1 (B-type). (6.6)

Combining these together with (.3) or (p.4) one can show that, for any pair of an orientifold
C and a D-brane B,

p(PeB) = 20(€) —¢(B) (mod 2). (6.7)

The formulae (.J) and (f.4) determine the action of orientifolds on all the long-orbit
branes, or branes with trivial untwisted stabilizer group &. We need some more work to
find out the action of orientifolds on short-orbit branes which have non-trivial ¢/ and are
therefore labelled by additional label specifying a character of U.

6.1.1 Parity action on short-orbit A-branes

Short- orbit A-branes are made from permutation boundary states in twisted sectors,

|B(1 >(“) and |B(/2 M)>(“) in the product of N identical minimal models M (k)" de-
27
)

fined in (5.14) and (p.15). They satisfy the basic transformation laws (here w = e*+2

(2-+-N1) (12---N)
’B 5! N1)>1(\I!g)NSi —HB )>1(\Ilg)NSiWM“’ (6.8)
M .
|B k/2,M >1(\T;é)NS;t o |B /2M >1(\T;é)NS;tw "
12 N (12N a—
‘Bk/2M >§(u) — ’Bk/2M 2>(u)wu(2a 1)

We study the action of NS parity Cf; on these boundary states. It maps the o-permuted
boundary states to o’-permuted boundary states, where

c=(12---N) = o =nc'n=(x(N)n(N—1)---x(1)). (6.10)

The NS parity acts on Ishibashi states as

(=) P B L, m) ), = @ard’/? - B L, —m) ),
( )FLPW "Boﬂlam»](\]S)Nsi - ®a,yé\4a/2 : "BU 7lak + 2 - m>>1(\1l;)NSi : (iZ) (611)
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Therefore the boundary states are transformed as,

() PGB e = a2 BT ) s
(PGB ) s = @ara™” - 1BT, ) P - (). (6.12)

The above formula can be directly applied to the parity action on short-orbit A-branes
in Gepner models. A general permutation A-brane with stabilizer group Zy (H' = H/h)
takes the form (p.14),

A wiph,
BLn )y = Z Z 7<A>®| Lo M)y )Y exp (%) (6.13)

VEZh /JGZH/

The orientifolds € 4™ maps the brane |BLS#) to Rarylal? ‘Bé’ilﬂﬁ/>- The permutations
o and o’ are related cycle by cycle as follows,

o= (a1 a,) < o.=(r(ay) - m(ay)). (6.14)
The mod-H’ integer p gets shifted according to the following rules:
1. p gets shifted by % BI' it H is even and the orientifold has e = (-).

2. p gets shifted by 25— L if the boundary state in 7 —tvvisted sector contains 2n tilded
boundary states.

As an application, let us find out the condition for an A-brane Bf’g}lp to be invariant

under the A-type orientifold (?A7r . For simplicity, we assume their labels are chosen in
such a way that the pair (BL,M’ (?”M) satisfy the condition PIB . The problem is then how
the label p is transformed under the parity. Besides the possible shifts of p listed above, it
gets shifted when we use the formula (B.§), (6.9) or the identification F. to transform the
labels (mo~1m L, M’) into (o, L,M). A detailed analysis shows

3. p gets shifted by - L if the boundary state in ’y )—twisted sector contains n tilded
boundary states of type (D11, (2)m or (3)m1-

4. p gets shifted by ( R ) or (h+1+ M‘” )

sector contains a tilded boundary states of type (2)1 or (2)11.

2/ if the boundary state in V?A)—twisted

In any case, the action of orientifold on p of the brane B Wi

is at most a half period shift,
and it only occurs when L is special so that the tilded boundary states are involved in its
construction. The parity action on the label p is thus determined from the expression of
boundary state in W(hA)—tWisted sector. Whether p is invariant or shifted by half-period is
determined by the following sign (where the notation should be obvious from the above

explanation),

A = (B TT ()54 [T () (6.15)
B:(2)1 B:(2)11

— 47 —



6.1.2 Parity action on short-orbit B-branes

B-branes in Gepner model with nontrivial untwisted stabilizer I/ are made of permutation
boundary states |B7",) defined at (5.19), with o = (12--- N) a cycle of even length. Each
of ]BZ‘;W contributes a factor of Ly or L 12))2 to U, depending on whether L is generic
or coincides with k/2. For the D-branes whose untwisted stabilizer contain the generator %
of (-27), we construct the boundary states in ¥-twisted sector using |B7 72, o) and [ B2 )

k/2,M
defined at (5.2§) and (f.31).
The o-permuted short orbit B-branes are therefore labelled by the half integers (p.),

and also by a sign ¢ if U contains the element §. Each p. is associated to an even-length
cycle o., and has period k. + 2 or (k. + 2)/2 depending on whether L. is generic or not.
The sign € appears in the expression for boundary states as follows,

(L) (Le# )
B,o,(p, Va - < pe
Bon” )~ Y e R IBE ) Q1B
®74% € Tmir/H odd even
Oc, c,“r OcyPe,
X{® kCM ®"Bkc7pM +€®"3ch ®"Bkc[;\% } (6.16)
odd even odd even

An example is the boundary state (5.33) for a B-brane in the (88444) model.

We wish to find out the action of various B-type (NSNS) parities on B-branes, in par-
ticular how the labels (p,, ) are transformed. We consider the parity Plgl’ﬂf corresponding
to a general B-type orientifold,

O = e Y IR ew (T2

o] b
Actually the transformation law of {p.} is obtained simply by applying the general for-
mula (B.79), thanks to the fact that the boundary states in twisted sector is essentially
unique unlike the case with A-branes (cf. equation (f.§)). To illustrate this, let us work

BU(PCv

out the condition on p-labels for a B-brane By 9 to be invariant under the orientifold

B,m, 7
A
Condition for Parity Invariant Branes (PIB) 3. Take a pair (BY \p, CY;) satisfying
the condition PIB . Then the B-type orientifold @fi/l’ﬁf acts on the p-labels of the B-brane

BB K/[p in a non-trivial manner. By analyzing the condition of parity invariance on p block

by block one finds the following:
1. the blocks of type (1) do not contain p-labels.

2. in a block of type (2), the boundary state BTN, (0. = (araz---azn)) has the label p,
which transform under parity as

(tot) ’ ,r(tot) —

Pe F pPetr Tay = Tag T — Tag,-

It follows from the involutiveness of parity that r*% =0 or % mod k. + 2. If the
latter is the case L. has to equal k./2, but there arise no condition on p..

,48,



(tot)

3. in a block of type (3) the parity transform the p-label as p. — — p. — r\*°Y  where

pe, 7Y are defined similarly to the previous case. The parity invariance requires

(A) P Pec = —%’I“(wt) mod —kc;Q, L.= any,
or (B):pe=—ir(tot) y kef2 poq kef2 p = ke,
4. in a block of type (4), we take oc0 0w = (a1 -as) o (aj- - ay,) and consider the

boundary state B7; @ B . The parity acts on the labels pe, per as

Pe — _T(tot) — pe,s 7n(tot)
(tot)

Tars — Tas +Ta3 T Tag,

— =Ty — T +Tq - —Tg -
pC? al a2+a3

/ = =T
Pec ab,

The parity-invariant blocks of type (4)1r or (4)1v have to satisfy

(III) : pe + per + Y =0 mod k. + 2,
(V) : pe + per + oV = k2 mod K, + 2.

The pair (Bf bE C’%W’F) therefore decomposes into blocks of 10 different kinds,
(D1, W1, 21, 2, Bia, Bs, (Bua, B)us, (4, (4.

Parity action on £. A naive application of the formula (R.79) does not work for de-
termining the action of parity on € because we have been making no distinction between
7%—twisted sector and ¢7%—twisted sector of minimal models. Here we focus on short-
orbit B-branes BE’K/’[@’E) satisfying the condition PIB ] discussed above and ask what is
the relation between ¢ and ¢’ in the formula:

(_)FLP§77T7F . Bf7§/j{(p7€) ’_)AnyK/y[(Pﬁl)
M : s :

)

The result is summarized as

/

% = (_)ﬁ(l)n+ﬁ(2)11+ﬁ(3)11A+ﬁ(3)HB . (_)ﬁ(3)IB+ﬁ(3)HB . H (=) - (_)ZaEGC e (6.17)

oc odd, Le=ke/2

where (- - +) counts the number of blocks of each type. The factors in the right hand side
arise from the following reason. The first sign (—)!DnHEnHENAHEGIIB arises because
the states \BZ/ZM% ]BZ/’;;\H are odd under the shift M — M + k + 2. The second sign
(—)iBBHGB is from the states ]BZ/’;;\H which are odd under the shift p — p+ &2, The
last factor arises from the odd-length cycles o. labelled by L. = k./2. A (—i) is due to the

parity action
F S N
(_) LP1\7r_/I|BZ./27M>NSNSi = :F Z|Bg/27Mtot—M>NSNSi'

The r,-dependent sign arises from the action of quantum symmetry labelled by 7 on states
sitting in (14, - - - 14, )-twisted sector.
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6.2 Gauge group

If a brane B is invariant under the orientifold €, then the corresponding Mobius strip
amplitude shows a massless gauge boson running along the strip. The parity eigenvalue
of the gauge boson determines whether the gauge group is O or Sp. We read off the
eigenvalues of NS parities (—) Pe or (—)f® Pg for the orientifold € from the amplitudes

H H
+1 NSNS+<B|q |G>NSNS:I: = F NSNSI<e|q |B>NSNS+'

We regard Fi as the value of NS parities for open string NS ground state. Since NS parities
square to fermion number, it follows that the NS tachyon (and all the NS states that are
projected out by GSO projection) has odd fermion number, and the remaining states have
eigenvalues +1 of the NS parities. The gauge group is O or Sp depending on the gauge
boson having eigenvalues —1 or 1 of NS parities.

We compute the eigenvalues of NS parities by decomposing the Mébius strip amplitudes
into parts. The spacetime part of the amplitude reads

Cst i~ imd
}dezl: I

—7H. /Al _cst_ 1 ol
Fi NSNS+ <B’e o /4‘G>NSNSi ~ Fioq ™ Q{XO( ) F iX2(q) 27T)

(g=e
where y; are characters of U(1 )2 and the hat operation is defined in (R.1(). The spacetime
part therefore contributes —e 7 to the eigenvalue of (—)fZ.RPe on gauge boson. The
internal part, if the brane is parity invariant, can be studied by decomposing them into
blocks as explained in section P.5.1. Let us forget about the orbifolding for the moment
and first consider Mobius strip of a single minimal model,

min(L,k—L)
_mHc I+L— T ~NS
NSNS+ <BL,M‘6 e ‘GM>NSNS;t = Z {( )+ 2 e$ * Xzz 2:FM M(q)
=0
i” oNSF
T Xy o1 oM — B—k— Q(Q)}’ (6.18)

where X\}\ﬁi are linear combinations of hatted characters in minimal model,

Xim = Om0Xim,0 £ 101m2X1,m,2; (6.19)

and o, = €70(m5) was defined at ([£J). From the coefficient of XNSi one finds the value
of NS parities on the ground state,

L=any, M =

L:%, M =

or % +k+2= (—)fLerpy; = eﬁf,

+ k2 = (=)frrpy = =7 (6:20)

NSNS

We generalize this analysis to the pairs of a permutation brane BE,M and orientifold
€%y In tensor products of minimal models. We again assume M, = M,T(a) for simplicity.
We decompose them into blocks satisfying the condition PIB ] and compute the values of
NS parities block by block.
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NS Parity eigenvalue formula.

(1 : ()rP=e"1, 3

s Cypos, e
Di: (=)*P=e"1, B : (m)rP =1,
@ () P=1, (4); (—)Frp =1, (6.21)
Qs (—)FLP = —i(—) 55, @ ()P =1.

To determine the gauge group on D-branes in Gepner model, one has to combine the
NS parity eigenvalue from all the blocks together with the overall coefficient of the crosscap

Cns, and then sum over orbifold images.

NS?
Let us start with type IIA and consider a brane Bf’K}f invariant under the orientifold

CA™¢ The Mébius strip amplitude is given by the sum over orbifold orbit,

M
A,o, A,mye 1 o T
Y<BL,Mp|qH|el\7[ >Y’ = wZY<BL,M|QH|GW(1\7[)>Y/€(’7)CNS
yel

- LS w0 (622)

where €(y) = ¢ when (M) = M + 2v, and H C T is the stabilizer group of the brane.
In the sum in the right hand side, there are |H| terms satisfying the condition PIB P] and
therefore contributing to the NS parity eigenvalue. However, for generic L the sum is trivial
so that it simply removes the factor 1/|H| in front. If L is such that the enhancement of
the stabilizer group occurs, the sum boils down to an average of two terms with v being
identity or the generator W(hA) of the stabilizer group. Expanding M(id) and M(+") as power
series in the loop-channel modular parameter, the coefficients of the leading term gives the
eigenvalues of operators (—)fZ P and (—)FLV(}‘A)P on ground state. The value of W(hA) on
open string ground state obtained in this way should coincide with A at (6.19).

Let us next consider type IIB case and take a brane Bf ’K/’I(p <) invariant under the

orientifold Cﬁ’w’?

by summing the Mé&bius strips M(7) in the product of minimal models satisfying the

. The parity eigenvalue of NS ground state on the brane can be computed

condition PIB . When o contains a cycle o, of even length, this involves summing M(y)
over orbits generated by the elements v,. € U defined at (p.2g). This not only enforces
the condition PIB f§ on p. but moreover projects out the terms containing blocks of type
(2)11, (3)1B and (3)11a. The terms which survive this averaging are therefore those consisting
only of the blocks

(D1, (W11, (2)1, 314, (3)us, (41, (4)1v-

The non-trivial part of averaging thus amounts to the sum over v € (Zg)p*1 C I'mir, where

p is the number of odd-length cycles o, labelled by L. = % and (Z9)P~! is the group of

even-order monomials of 77900 =11 aco, Na- Including the spacetime part and other factors,
the NS parity eigenvalue of gauge bosons finally becomes
(=)frp = _CNS(_Z‘)%{ﬁ(l)rﬁ(l)nfd}ﬁ(ii)m X

«Re 2*[?/2}(_2‘)31(1)11 . H <1 + i(_)zae[,c ra) ) (6.23)

oe odd, Le=ke/2
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o ©(B) | P o o(B) | P o ©(B) | P
id 0 | -1 id 0 | —i id 0 | +1
(12) -3 | (12) -3 | -1 (12) -3 |
(12)(34) | —1 | +1 (34) -1 |+ (345) -1 | +1
(12)(34) | —1 | —i (12)(34) | -1 | -1

(123) —1 | —i (13)(24) | —1 | +1

(123)(45) | —3 | +1 (1234) -3 | —i

(12)(345) | =3 | —i

(13542) | —2 | +1

Table 3: Parity eigenvalue of gauge boson on various D-branes of the model (55555).

6.2.1 Example 1: (55555)

Let us study the gauge group on A-branes |B£‘:K/I> in the model (55555) which are invariant
under the orientifold |(§f—/i7r>. We put ¢ = —1 and set M = M = 0 for simplicity. For
each of the allowed ¢’s we compute the supersymmetry phase of the brane |B([7,,0> and the
eigenvalue of corresponding NS parity P and summarize them in the table f below. Because
H is odd, the parity eigenvalue are computed simply by multiplying the contributions from
blocks.

When the eigenvalue of P is pure imaginary, the gauge boson has (—)F = —1 and is
therefore GSO projected out. This is in consistency with that the brane B is mapped to
its anti-brane under an orientifold € when ¢(B) — ¢(€) = 3 (mod Z), as the table shows.

Since nontrivial stabilizer group or summing over orbifold images do not affect the com-
putation of parity eigenvalue, the analysis for B-type branes and orientifolds is essentially
the same and the result summarized in table [] applies also to B-types.

6.2.2 Example 2: (88444)

We take this model to discuss the gauge group on branes with special L-labels. We first
present some type IIA examples:

A,m=id,+
~ .
When ¢ = —1, the branes with generic L support O(N) gauge group. If L; = Ly =

e Consider a non-permuted brane Bf’K/I: i jnvariant under the orientifold €

3 the branes split into two short-orbit branes exchanged to each other by orientifold
because A of (f.If) takes —1, and the short-orbit brane supports a unitary gauge
group.

A,(12)(345)  5A,(12)(34),—
(‘BL,I(\/I)( ) eA(12)(34)

' M
Assume the pair (B, y, €Yy, ) satisfy the condition (3); x (1)1 of PIB B, namely

e Consider a pair ) with the latter normalized as ¢y, = —i.

1 - _
Mo = §(M1—|—M2)—|—2V mod 8,

1 ~ ~
Msys = §(M3+M4+M5) 4+ 3v mod 4.
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The gauge group on branes with generic L is either Sp or O depending on whether v
is even or odd. For special L, namely (L3 = 3, L35 = 1) they break into short-orbit
branes supporting a unitary gauge group.

We next consider some type IIB examples:

%id751---55. We

normalize the orientifold by setting ¢, = —@“, where « is the number of ¢,’s taking

e Consider a non-permuted brane Bf’li\c/l[ invariant under the orientifold ©

minus sign. The L-label of branes is called generic if L, = k,/2 for at most one a. If
a brane Bf ’11\(}1 with generic L is invariant under the orientifold G%’ld’glm%, then there
is a set of integer {v,} such that Bid,  and €id satisfy the condition PIB . The

M+20
NS parity eigenvalue is then given by
()P = —ieti e = — et Ou] ke T b2, (6.24)
a a a

Here we used that L, + M, and k“—2+2 are even for all a. Note also that « + #(1)1
is always even if the brane and orientifold preserve the same supersymmetry. The
branes with p(> 2) of L,’s coinciding with g—“ are special. The NS parity eigenvalue
for such branes is determined by applying the general formula (.23),

(—)eP = —sgn[Re(i*(1 +i)7)] [ ] ek - T el (6.25)

We thus recover the result of tables 9,10 of [[J]. The gauge group is unitary when p
is even and a + & is an odd integer.

6.3 Tadpole cancellation

Here we discuss the RR tadpole cancellation condition and its solutions. The formula
relating the charges of crosscaps and boundary states in minimal models allows us to find
a set of D-branes cancelling the RR-charge of any given orientifold. It is more difficult to
find the set of D-branes preserving a spacetime supersymmetry. In principle we have to
deal with a system of coupled linear equations with integer coeflicients, and the complexity
of the problem depends on the number of linear equations which equals the dimension of
the RR~charge lattice.

6.3.1 Type IIA on (55555)

There are three physically inequivalent orientifolds, @iod, @(()12) and (3812)(34). We only con-

sider those with negative tension (O~ -planes). These three orientifolds have supersym-
metry phase ¢ = 0,1/2,1 respectively. The simplest tadpole-free configurations for these
orientifolds are obtained by wrapping four D-branes of the like charge, same supersym-
metry phase on top of the orientifolds. Such configurations are described by the tadpole
states,

C5) + 4B ) 1607 + 4B ) €57 CY) +4IBEVE ). (6.26)

M=(22222) M=(9222) M=(992)

These will be all interpreted as four D6-branes on top of orientifold plane wrapping an
RP3 [, and supporting O(4) gauge theory with various matters.
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6.3.2 Type ITA on (88444)

We have found 30 physically inequivalent orientifolds labelled by different choices of
(r,M) (p.40) and a sign e. The choice

ensures the negative semi-definiteness of the tension for all choices of (m, M) in the list.
For 12 of them labelled by m = id, one finds the expressions the RR~charges in terms of
those of D-branes [[L7],

id,+ i i
[8(00000)] + 2[‘31?:(33111)] + 2[‘31?:(33111)] =0,

M=(33111) M=(33111)

id,+ i i
[61(00002)] + 2[‘35:(33111)] + 2[‘35:(33111)] =0,
M=(33113) M=(33111)
id,:l: i i
[6(02000)] + 2[31(.1:(33111)] + 2[31(.1:(33111)] =0,
it M:(35111) M:(33111) (627)
[6(072002)] + 2[‘Bllc}:(smu)] + 2[‘Bllc}:(smu)] =0,
dt M:(SSIIS) M:(SSIII)
[6(2’2000)] + 2[311?:(33111)] + 2[311?:(33111)] =0,
it M:(SSlll) M:(33111)
[8(272002)] + 2[‘Bf:(amn)] + 2[‘Bf:(amn)] = 0.
M=(55113) M=(33111)

Note that each of the D-brane charges appearing above equalities expresses the sum of the
charges of two short-orbit branes labelled by L, M (recall that the non-permuted branes
with L1 = Ly = 3 are fixed under ~*). These relations immediately give RR tadpole free
configurations, which are however not supersymmetric except for those in the first line.
In [[[J], some supersymmetric tadpole-free configurations were found by rewriting these
equations using the relations between D-brane charges in minimal models,

Br.m] = [Bom—r] + [Bom—r+2) + -+ [Bom+rl- (6.28)

For some of the other 18 orientifolds, we found the following equalities for the RR

charges,
12),+
[C{onn0)) T 21BL 2011y ] F 21BL 2 01i1)] = 0,
(12)4 1\;12:(3333) 1\;12:)(1333)
[@(000’02)] + 2[B£ :)(0111)] F 2[By, :(0111)] =0,
(30) 1\;}1:(3335) 1\;1;(1333)
[G(OOObO)] + 2[B£ :)(3301)] + Q[BL :(3301)] =0,
(34) 1\;1;(5533) 1\;{;(5513) (6.29)
[G(OQObO)] + 2[‘B£ :)(3301)] + 2[B£ :)(3301)] =0,
M=(5733) M=(5513)
34),+
[{ana0y) + 2B 0n) ] F 2BE 01, = 0,
(12)(34) & M=(7733) M=(5513)
EU2ENE] | o[pien | = oBlED |
M=(333) M=(113)

Applying recombination to some of them, we found the following supersymmetric tadpole-
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free configurations,

(12),e
00000 + 2 Z ‘BL (1111)

M=(2111)
(34),€
00000 + 2 Z ‘BL (3311) (6.30)
=(5523)
(34),€ (34),¢
22000) +2 Z |BL (3301) +2 Z |B 3321)
=(7733) M=(5553)

Here € specifies the characters of the stabilizer group Zs of short-orbit D-branes.
The remaining 6 orientifolds all involve the permutation orientifold |G§\223V[ +g) of the
first two minimal models. The crosscap states are made of closed string states sitting in

W(A‘A)—twisted sector, and are in particular tensionless.

6.3.3 Type 11IB

In type IIB Gepner models, the tadpole-free condition can be solved more easily because
the charge of D-branes span a lattice of relatively low dimension.

Let us first focus on the charges arising from the untwisted sector (in the mirror
description). In mirror Gepner model labelled by (k1 ---k,) and H = l.c.m.(k, + 2), the
relevant RR ground states are labelled by a mod-H integer v which is not multiple of any
of (kg +2). They take the form

po= 1 QN lasla + 1,1) @ (lay —la — 1, =1)) - (=), (6.31)
a=1

where (l,,d,) is a unique pair of integers satisfying v = d,(k, + 2) + I, + 1. Counting the
allowed v’s one finds the dimension of RR charge lattice spanned by the ground states in
the untwisted sector, which is 4 for (k,+2) = (5,5,5,5,5) and 6 for (k,+2) = (8,8,4,4,4).
Since the dimension agrees with the known value of 2hq 1 + 2 for both cases, there are no
RR-charges from twisted sectors for these two theories.

The boundary states | By ,) are shown to have the following overlaps,

RR+

1 T19, P (@) (ke + 2)°%

BY = 6.32
<V‘ L M>RR+ Q[P/Q}ﬁ HZ:l ‘1 _ wuwa’1/2 ( )
Here we denoted w = e%, Wy = % and
Fpovlz) = x%(M—i—L-i—l) . x%(M—L—l),
oc|—1
— max([%],()),
p = (number of odd-length cycles labelled by L = k/2). (6.33)

The powers of (k. +2) and the factor 2[P/? arise from the order of the stabilizer group and
its untwisted subgroup. The RR charge of B-branes are thus expressed conveniently by the

polynomial,
[o]

2 PP Fr aa. (a) (e + 2)%. (6.34)
c=1

[BLml(@)
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In particular, if the argument x of the polynomials is assumed to satisfy
1—afl = 14a% 42 4. guelbatl) = (6.35)

one can rewrite every polynomial in terms of a finite number of monomials. The number
of monomials required is the same as the dimension of the (untwisted) RR-charge lattice.
So [Bf, m(z) are naturally identified with vectors on the RR-charge lattice []. As an
application of this formula, the intersection number of D-branes is computed by the index,

/7 / k) —_— - J H
I(Bi’fl)\/l”ﬂiﬁ\/[) = RR+ <BL’ M"e i O ‘BL M>RR+

= Z RR+ <‘Bi’7/1)v["e_m‘]0 ’V>RR+ " RR+ <V‘BL M>RR+

HZ M ) 636)

wuwa)
The polynomials [BEM](m) satisfy various relations under the assumption (6.35). For

example, for the model (55555) one finds relations among RR~charges of various permuta-
tion branes by a repeated use of the formula (x% — xfé)_l = %(afg 42077 — 272 — x%)

B9 = £ ([BOM 3] + 2[BEas1] — 2B ) — [Bilarial)

12)(34 1. .,023 i
0,M = Bo'l = o nr—a) = 2[Bo ) + [Boarial) s (6.37)
Boar ) = £[Boar] = 7 ([Boa —2(B
where we used the label M = Zc M, (mod 10) instead of M.

It is straightforward to express the RR charge of orientifolds in terms of similar polyno-

mials, using the relations (f.20) and (f.34). For the model (55555) one has simple relations

[ 1( 0000)] —4[B 1( 2222)0]
( ( 2)

€ ooooo] —4[B 4399) 5] (6.38)
(12)(34)7 _ (12)(34)

[6(00000)] - _4[3(002)0 J-

This agrees with the result of [[£ using the (twisted) Landau-Ginzburg description [[4].
For the model (88444), there are orientifolds labelled by (m,M) as well as €’s and r’s
as explained in Example 2 of section f.2.9 Restricting to those with » = ' = 0, the
RR-charges are given by the following polynomials:

Eidereaacien)(4) [93(33111) @) - (14 eear) (1 + esa)(1 + eqa)(1 + e5a),

[0 “C)(@) = =[Bia111),—2)(2) - (1 + c162) (1 + €2) (1 + e4z) (1 + 52),
[Claooesy” 1) = [BE&?’H) @) (14 aen)(1 +aar)(l +aea),
[6(20058)636465](5“)

c Egéé’555265](m) [353331) [(x) - (1 + ereaw)(1 + es5)

[Caonoe;” " )(@) = —2[B{y (@) - (1 + erea)(1 + es)
[6500000) () = [Bﬁoo)l() Y )(@) - (1 + eresa)
[egzoooo () = (6.39)
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RR charges from twisted sectors. Finally we briefly discuss the case where the RR
charge lattice is not entirely spanned by the states in the untwisted sector. We take as an
example the model (44666), H = 12. The RR charge lattice is known to be 14 dimensional,
of which 8 arise from the states |v),; in the untwisted sector defined at (6.31]). The values
v =0,4,6,8 (mod 12) are excluded, but for v = 4,8 there are RR vacua of the form

’M75>RR = ’(,U,— 17:“7 1) ®(M_ 17,“7 1)> ®‘(M_ 17_/1'7_1) ®(M_ 17_/1'7_1»
5
®H‘(ﬁ_17ﬂ71)®(ﬁ_17_57_1)>7
r=vmod6 = 4o0r2, pu = 1,23 (6.40)

These 6 RR states from twisted sectors complete the full set of RR charges. They are
sitting in the (7}'v, *)-twisted sector of the mirror Gepner model.

The B-type permutation orientifolds of the model (44666) have twisted RR-charges if
m permutes 1 and 2. The permutation B-branes have twisted RR-charges if their untwisted
stabilizer group contains elements v}'y5 *. The RR-charges of these branes and orientifolds

271, TiD
are again conveniently expressed by polynomials of (y = e 4“, z = eQT) which therefore

satisfy
l+y+y?+y® = 1+2422 = 0.

The branes carrying the twisted RR-charges are
o, 12 o
By © B aw] = [BLo) )BT al(2).
1)(2 o
(B @ B ] = (1= y+ 42 — 5°) (B ) (2). (6.41)

In the second line, none of L, equals 2 because otherwise the untwisted stabilizer of the
brane would not contain 7;7s. The orientifolds carrying the twisted RR-charges are

B,(12),p . o —r(vi—ve) iy vs v _us
Cm : pr761763,64765(V) = Wy €1 €37€4 €5
B,(12)(34),p N (e 2 T(VS v4) v1 vs
Cm Prt er,es(V) = wy W €1 €5 -

We restrict to those with M = (00000) or (20000) and e¢; = +1 since all the others are
related to them by symmetries. Their twisted RR-charges are expressed by the polynomials

[Cvroonty] = —2 ([Béliér](y) + (MPB6, )
[3(222) J(2)(1 + e32?) (1 + e42?) (1 + €52%),
Citooney "1 = =2 (IBEZ:)w) + () M2[B(2, )

[ng; 1(2)(1 + €52?). (6.42)

7. Concluding remarks

In this paper we discussed the construction of permutation orientifolds in general RCFTs
and then studied those in Gepner models. Although our analysis was limited to the Gepner
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point, it will serve as a starting point to explore a new class of four-dimensional string vacua.
It will be interesting to see how various properties of permutation orientifolds continue in
moduli space to large volume. In doing this, it will be useful to switch from the description
in terms of coset CFTs to those in terms of Landau-Ginzburg orbifolds or linear sigma
models. A number of works along this path have appeared recently [4, {3, B7).
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